FE-NI ALLOY HAVING HIGH STRENGTH AND LOW THERMAL EXPANSION,...

Alloys or metallic compositions – Ferrous – Over 10 percent nickel containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C420S095000, C420S581000, C420S459000, C148S336000, C148S409000, C148S419000, C313S402000

Reexamination Certificate

active

06592810

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to an Fe—Ni alloy having high strength and a small average thermal expansion coefficient. More particularly, it relates to an Fe—Ni alloy which is applied to a shadow mask, a Braun tube (i.e. cathode-ray tube) with the shadow mask, a lead frame, a semiconductor element with the lead frame, components of a precision machine and so on.
Fe—Ni alloys of the Invar alloy system, of which typical example is an Fe—36% Ni alloy, and Fe—Ni—Co alloys of the super Invar alloy system, of which typical example is an Fe—31% Ni—5% Co have been well known as low thermal expansion alloys each having a small thermal expansion coefficient. The Fe—Ni alloys and Fe—Ni—Co alloys have been utilized for the uses which require low thermal expansion property and which are, for example, shadow masks in displays of televisions and computers, electron gun electrodes of Braun tube, or lead frames used typically for semiconductor packages.
For example, mild steel has been conventionally used as the material of the shadow masks. Although mild steel has good press-deformability and etching property, it has a large thermal expansion coefficient of about 12×10
−6
/° C., so that it has a problem that a thermal expansion of mild steel by heating with electron beam irradiation causes deterioration of color purity. Recently, while there has been an increasing demand for displays with high resolution and high brightness, the Invar system alloys each having a small thermal expansion coefficient, typically the Fe—36% Ni alloy, have been put into practical use as an alternative shadow mask material to conventional mild steel. However, the Fe—36% Ni alloy of the Invar system has problems that it has inferior etching property than mild steel and is very expensive.
Furthermore, under a recent rapid progress of displays toward a flat-face configuration, a tensioning system, in which a shadow mask is supported by a mask frame under a tension, has been increasingly utilized instead of the conventional shadow mask produced by press forming. In the tensioning system, since the shadow mask is supported by the frame, it is not required to have particular strength for keeping its shape. Thus, a development of a thinner shadow mask is in progress for a cost reduction purpose. However, with regard to the handling of such a thin sheet, a handling property (i.e. strength) is required therefor so as to be able to bear bending and deformation at each handling step.
With regard to the lead frame, since it is bonded to a semiconductor element having a small thermal expansion coefficient, an Fe—Ni alloy, of which typical example is an Fe—42% Ni alloy having a thermal expansion coefficient close to that of the semiconductor element, is used for the lead frame material. The lead frame material is subjected to fine lead working of press-punching or photo-etching. Since there is an increasing demand for finely worked shapes of high precision as semiconductor devices become highly integrated, the Fe—Ni alloys is required to have improved punching property and enhanced strength for a thinner sheet.
With regard to the Fe—Ni and Fe—Ni—Co alloys applied to the above mentioned uses, there have been proposed many means by adding Nb for improving etching property, press-deformability, strength and punching property. For example, JP-A-4-120251 proposes a shadow mask material in which an amount of soluble nitrogen (N) is reduced by limiting nitrogen to not more than 0.01%, by adding 0.01 to 1.0% of Nb which is susceptible to form nitrides, and further by adding a proper amount of Cr to improve adhesion property of a resist film and rigidity after press-deforming. JP-A-7-145451 proposes a lead frame material in which 1 to 4% of Nb is added to obtain high strength.
With regard to lead frame materials, JP-A-9-263891 proposes an Fe—Ni alloy having high strength, low thermal expansion property and improved punching property, which comprises 0.003 to 0.03% of carbon, 0.005 to 2.5% of Nb, 0.001 to 0.02% of nitrogen and in which the alloy comprises niobium compounds (i.e. carbides and nitrides) having a particle size of not more than 20 &mgr;m. JP-A-10-183304 proposes a method for improving press-deformability and mechanical strength of an Fe—Ni alloy by controlling the size of particulate precipitates of elements, carbides, nitrides and/or intermetallic compounds which comprises elements of Group 4A or 5A to not more than 5 &mgr;m, and by further controlling carbon and Nb amounts within ranges of 0.001 to 0.3% and 0.01 to 6%, respectively, to control precipitation of NbC (niobium carbide).
Further, JP-A-10-60528 proposes a high strength Invar alloy sheet for shadow masks and lead frames, which comprises up to 0.10% of C, up to 1.0% of Nb and not more than 0.005% of nitrogen.
The alloys or ideas mentioned above are effective means for improving various properties required to shadow masks or lead frames. However, in the case of the way wherein, with use of soluble Nb as a highly strengthening means for the alloy, a work strain is provided to the alloy in order to work-harden it, a lot of Nb is required, so that there arises a concern about deterioration of thermal expansion property. Further, in the case where the alloy is highly-strengthened with use of Nb-containing precipitates, which relies on the dispersion-strengthening effect primarily by niobium carbide, a lot of Nb is also required to ensure an enough amount of precipitates for attaining such an effect. It is also noted that the precipitates have a large size.
In the conventional alloys mentioned above, carbides and nitrides, which crystallize during solidification after ingot-molding, are liable to be coarse, causing problems that they may protrude from an etched surface and wear of a die is enhanced when press-punching.
BRIEF SUMMARY OF THE INVENTION
Accordingly, an object of the invention is to provide an Fe—Ni alloy having high strength and a small average thermal expansion coefficient, in which crystallization of coarse carbides and nitrides is restrained.
Another object of the invention is to provide a shadow mask made of the Fe—Ni alloy and a Braun tube with the shadow mask.
Still another object of the invention is to provide a lead frame and a semiconductor element with the lead frame.
The present inventors tried to develop a new process for highly strengthening the Fe—Ni alloy without relying on crystallized carbides which are liable to be coarse. As a result, they have finally found that the alloy can be refined to have fine crystal grains by precipitating, in the alloy structure, a lot of fine niobium compounds, which are primarily niobium nitrides and other compounds such as nitrides, carbides, and carbon nitrides, the niobium nitrides being capable to be super-finely precipitated by the solution/precipitation treatment, thereby the alloy can be highly-strengthened effectively without deterioration of various material properties. That is, the manner of improving the Fe—Ni alloy is to precipitate super-fine niobium compounds with utilization of a small amount of additive Nb, more particularly, by adjusting each amount of Nb, carbon and nitrogen within an amount range entirely soluble in the Fe—Ni alloy by the solution treatment. According to the improving manner, it is unnecessary to use a large amount of Nb, because it is intended to restrain crystallization of coarse carbides and nitrides and does not rely on the conventional method which is primarily based on dispersion strengthening.
Thus, according to a first aspect of the invention, there is provided an Fe—Ni alloy having high strength and low thermal expansion, consisting essentially of, by mass percent, 30 to 50% of Ni, 0.005 to 0.1% of Nb, less than 0.01% of C, 0.002 to 0.02% of N, and the balance of Fe and inevitable impurities, wherein the following equation is fulfilled:
0.000013≦(% Nb)×(% N)≦0.002.
According to a second aspect of the invention, there is provided an Fe—Ni alloy having high strength and low thermal expansion, consisting essentially o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

FE-NI ALLOY HAVING HIGH STRENGTH AND LOW THERMAL EXPANSION,... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with FE-NI ALLOY HAVING HIGH STRENGTH AND LOW THERMAL EXPANSION,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and FE-NI ALLOY HAVING HIGH STRENGTH AND LOW THERMAL EXPANSION,... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3102532

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.