Electricity: electrical systems and devices – Safety and protection of systems and devices – With specific quantity comparison means
Reexamination Certificate
1998-11-16
2002-01-08
Huynh, Kim (Department: 2836)
Electricity: electrical systems and devices
Safety and protection of systems and devices
With specific quantity comparison means
C361S071000, C363S050000, C363S074000
Reexamination Certificate
active
06337788
ABSTRACT:
BACKGROUND
The present invention relates to an off-line switched mode control system with fault condition protection.
Quantum leaps in electronic technology have led to the development of “smart” electrical and electronic products. Each of these products requires a steady and clean source of power from a power supply. One power supply technology called switched mode power supply technology operates at a high frequency to achieve small size and high efficiency. In such a switching power supply, an integrated circuit (IC) regulator is connected in series with the primary winding of a transformer to a rectified and filtered alternating current (AC) power line. The energy is transferred from the primary winding through an output secondary winding to the power supply output in a manner controlled by the IC regulator so as to provide a clean and constant output voltage. Additionally, a third winding called a feedback or bias winding may be used to provide a feedback signal and power to the IC regulator.
The voltage on the feedback winding tracks the output voltage present on the secondary winding. Thus, when a short occurs on the output of the secondary winding, the voltage on the feedback winding also goes low. Further, in the event of a short circuit condition, an overload condition on the output secondary winding or an open loop condition on the feedback winding, the regulator circuit responds to such conditions by delivering maximum power over a period of time. In such cases, the regulator circuit detects that the power supply is short circuited, overloaded at the output or has encountered an open loop condition. In any of these fault conditions, the regulator circuit goes into a mode called “auto-restart.” In the auto-restart mode, the regulator circuit tries to start the power supply periodically by delivering full power for a period of time (greater than needed for start up) and turns off the power supply for another period of time that is approximately four to ten times longer. As long as the fault condition is present, the regulator circuit remains in this auto-restart mode limiting the average output power to a safe, low value. When the fault is removed, auto-restart enables the power supply to start-up automatically.
SUMMARY
The invention protects a power supply from fault conditions. The power supply has an output and a feedback control loop, the feedback control loop having a feedback signal which cycles periodically when the power supply operates normally and which remains idle when the power supply is in a fault condition. In a first aspect, the circuit includes a switching device for controlling power delivered to the output and a timer coupled to the switching device and to the feedback signal. The timer disables the switching device to prevent power delivery to the output in a first predetermined period after the fault condition exists.
Implementations of the invention include one or more of the following. The timer may enable the switching device to deliver power to the output after a second predetermined period. The switching device may be alternately enabled for the first predetermined period and disabled for the second predetermined period when the fault condition exists. The switching device may be enabled upon removal of the fault condition. The switching device may be a power transistor. The timer may be a digital counter. An oscillator with a predetermined frequency may be coupled to the counter. The oscillator may have a control input for changing the predetermined frequency and a first current source coupled to the oscillator control input to generate a first frequency. A second current source may be coupled to the oscillator control input to generate a second frequency. The counter's output may be coupled to the fist and second current sources. The timer may be a capacitor which is adapted to be charged at a first rate from a first threshold to a second threshold to generate a first predetermined period. The capacitor may be discharged from the second threshold to the first threshold at a second rate to generate the second predetermined period. The capacitor may also be reset to a voltage below the first threshold each time the feedback signal cycles. The fault condition includes one or more of an output overload fault condition, an output short circuit fault condition and an open feedback control loop fault condition.
In a second aspect, a method for protecting a power supply having an output and a feedback control loop from fault conditions includes receiving a feedback signal from the feedback control loop, the feedback signal being adapted to cycle periodically when the power supply operates normally and to remain idle when the power supply is in a fault condition; timing the feedback signal to detect whether a fault condition exists in the power supply; and disabling the output after a first predetermined period after the fault condition is detected.
Implementations of the invention include one or more of the following. A switching device may be enabled to deliver power to the output after a second predetermined period. The switching device may be alternatingly enabled for the first predetermined period and disabled for the second predetermined period. The switching device may be enabled upon removal of the fault condition. The enabling step may enable a power transistor. The timing step includes digitally countering periods of time. A signal may be generated with a predetermined frequency. The generating step includes oscillating at a first frequency and a second frequency. The second frequency may be used when the fault condition exists. The timing step includes charging a capacitor at a first rate from a first threshold to a second threshold to generate a first predetermined period; and discharging the capacitor from the second threshold to the first threshold at a second rate to generate a second predetermined period. The capacitor may be reset to a voltage below the first threshold each time the feedback signal cycles.
In a third aspect, a circuit for protecting a power supply having an output and a feedback control loop from fault conditions includes means for receiving a feedback signal from the feedback control loop, the feedback signal being adapted to cycle periodically when the power supply operates normally and to remain idle when the power supply is in a fault condition; timing means coupled to the feedback signal to detect whether a fault condition exists in the power supply system; and means for disabling the output after a first predetermined period after the fault condition is detected.
Implementations of the invention include one or more of the following. The circuit includes a means for enabling a switching device to deliver power to the output after a second predetermined period. A means for alternatingly enabling the switching device for the first predetermined period and disabling the switching device for the second predetermined period when the fault condition exists may be used. The circuit may have a means for enabling the switching device upon removal of the fault condition. The switching device may be a power transistor. The timing means includes a digital counter. The circuit includes means for generating a predetermined frequency. The generating means includes means for oscillating at a first frequency and a second frequency. The circuit may include a means for applying the second frequency when the fault condition exists. The timing means includes a means for charging a capacitor at a first rate from a first threshold to a second threshold to generate a first predetermined period; and a means for discharging the capacitor from the second threshold to the first threshold at a second rate to generate a second predetermined period. A means for resetting the capacitor to a voltage below the first threshold each time the feedback signal cycles may be used.
In another aspect, a fault protected power supply includes a regulator coupled to a transformer having a primary winding. The transformer has a secondary winding cou
Balakrishnan Balu
Djenguerian Alex
Lund Leif
Blakely , Sokoloff, Taylor & Zafman LLP
Huynh Kim
Power Integrations, Inc.
LandOfFree
Fault condition protection does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fault condition protection, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fault condition protection will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2817883