Fatty acid esters composition of a polyglycerine, and uses...

Organic compounds -- part of the class 532-570 series – Organic compounds – Fatty compounds having an acid moiety which contains the...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C426S329000, C426S330000, C426S331000, C426S334000, C516SDIG001, C516SDIG002, C516SDIG006

Reexamination Certificate

active

06278008

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a fatty acid esters composition of a polyglycerine containing more than 70% of a fatty acid monoester and a process for the preparation thereof.
Furthermore, the present invention relates to a highly-purified fatty acid esters composition of a polyglycerine and a process for the preparation thereof.
Still further, the present invention relates to the use of the fatty acid esters compositions of a polyglycerine for an additive for food-stuffs.
In addition, the present invention relates to a resin composition containing the fatty acid esters compositions of a polyglycerine.
Besides, the present invention relates to compositions for cosmetics or detergents containing the fatty acid esters compositions of a polyglycerine.
In more detail, the present invention relates to a fatty acid esters composition of a polyglycerine having an excellent emulsifying ability. The fatty acid esters compositions of a polyglycerine are useful as an additive for food-stuffs, an additive for thermoplastic resins, and an additive for cosmetics or detergents, etc.
BACKGROUND OF THE INVENTION
In recent, fatty acid esters of a polyglycerine are permitted as an additive such as an emulsifier for food-stuffs, and demands in a market are getting increased. The fatty acid esters composition of a polyglycerine have been usually employed in a variety of fields, particularly such as foods, as an emulsifier or an agent for adjusting a viscosity because esters having a wide range of HLB values can be obtained by the combination of polyglycerines having various molecular weight with fatty acids having various chain length which are starting materials, and it exhibits a higher stability in an acidic range.
As processes for preparing the fatty acid esters composition of a polyglycerine, there are exemplified; (1) an esterification reaction of a polyglycerine with a fatty acid, (2) a transesterification reaction of a polyglycerine with a fatty acid ester, (3) a transesterification reaction of a polyglycerine with an oil and fatty acid, (4) an addition polymerization reaction of glycidol to a monoglyceride of a fatty acid, and (5) an addition polymerization reaction of glycidol to a fatty acid, etc. Of the above-described reactions, the processes (2) and (3) are problematic in the reactivity and the processes have many limitations in quality and purity of the fatty acid ester of a polyglycerine.
The process (1) is described in JAOCS (Journal of American Oil Chemists' Society), Vol. 58, page 878 (1981), in which there is carried out the esterification reaction of a polyglycerine with a fatty acid in the presence of alkali catalysts to obtain a fatty acid ester of the polyglycerine.
Furthermore, Japanese Patent Unexamined Publication (Kokai) No. 41007/1994 discloses similar processes.
The process (5) is described in Japanese Patent Unexamined Publication (Kokai) No. 65705/1976, in which there is prepared a fatty acid monoester of glycerine. However, the Publication states that there is obtained a carboxylic acid-1-monoglyceride having the polymerization degree of glycerine of 1 with a high percentage in the presence of an inert solvent, that is, it corresponds to a compound having n of average 1 in the above-described chemical formula [1]. Notwithstanding, there is not mentioned a fatty acid esters composition of a polyglycerine at all in the Publication.
As processes in which the addition polymerization reaction of glycidol is employed, there are exemplified the addition polymerization reaction [Japanese Patent Examined Publication (Kokoku) No. 55254/1989, Japanese Patent Examined Publication (Kokoku) No. 11532/1992, Japanese Patent Examined Publication (Kokoku) No. 1291/1993] of glycidol to glycerine to obtain a polyglycerine employed in the processes (1) to (3), the preparation of a polyglycerine [Japanese Patent Examined Publication (Kokoku) No. 69621/1992] by a hydrolysis reaction after the addition polymerization reaction of glycidol to a fatty acid, and the preparation of polyglycerine monoalkylether or the preparation of polyglycerine monoalkylthioether [U.S. Pat. Nos. 3,821,372, 3,966,398, and 4,087,466], etc.
However, in the preparation process of a polyglycerine by a hydrolysis reaction after the addition polymerization reaction of glycidol to a fatty acid described in Japanese Patent Examined Publication (Kokoku) No. 69621/1992, low fatty acids (a carbon number of 2 to 6) are employed as fatty acids to prepare polyglycerines, and a fatty acid ester of a polyglycerine is not mentioned at all.
Heretofore, a fatty acid monoester of a polyglycerine has been prepared by the above-described process (1). In the process, it is pointed out that a polyglycerine having reactive hydroxyl groups of 4 to 10 on an average is employed as a starting polyglycerine, as a result, a resulting product contains an unreacted polyglycerine, poly-substituted fatty acid esters such as diester, triester, and tetraester, etc. other than the desired fatty acid monoester of a polyglycerine [N. Garti, et al, Journal of American Oil Chemists' Society, 59, 317-319 (1982)].
Furthermore, even in the process (4) in which glycidol is addition polymerized to a fatty acid monoglyceride, a purity of a reaction product remarkably depends upon the starting fatty acid monoglyceride [c.f. U.S. Pat. No. 4,515,775]. Particularly, in the case when there is employed a fatty acid monoglyceride obtained by the reaction of glycerine with a fatty acid as a starting material, the starting material contains unreacted glycerine as well as in the above-described process (1), resulting in that a fatty acid monoester of a polyglycerine obtained by the addition polymerization of glycidol contains only approximately 40% of the fatty acid monoester, and the residue of approximately 60% is composed of unreacted glycerine and poly-substituted fatty acid esters [Shigeru Tsuda, Monoglyceride, page 67 (1985), Maki Book Store].
As described above, there remain a large amount of unreacted polyglycerine and poly-substituted fatty acid esters in the fatty acid monoester of a polyglycerine employed until now. In the case when such the fatty acid monoester is employed as surfactants or emulsion stabilizers in food industries, it results in decrease of surface tension, decrease of dispersibility, decrease of foaming ability, and decrease of stability in emulsifying.
As a process for removing the unreacted polyglycerine, Japanese Patent Unexamined Publication (Kokai) No. 23837/1988 discloses a process in which the unreacted polyglycerine is removed by a liquid separation process using a mixed solvent composed of at least one of water-soluble organic solvents or water and at least one of water-insoluble organic solvents.
Furthermore, Japanese Patent unexamined Publication (Kokai) No. 81252/1991 discloses a process that the unreacted polyglycerine is removed by an adsorption method in which a solution of a reaction product in esterification is brought into contact with an alkyl-silylated silicagel.
Still further, Japanese Patent Unexamined Publication (Kokai) No. 41007/1994 discloses an extracting process in which the unreacted polyglycerine is removed by employing a water-soluble organic solvent such as n-butyl alcohol, n-propanol, or dioxane, etc. together with water or an aqueous solution containing a salting agent such as lithium, sodium, potassium or ammonium salts of an organic acid or an inorganic acid such as sulfuric acid or phosphoric acid.
And also, Japanese Patent Unexamined Publication (Kokai) No. 228052/1994 discloses an extracting process in which the unreacted polyglycerine is removed by employing methylethylketore together with water.
However, the process in Japanese Patent Unexamined Publication (Kokai) No. 23837/1988 includes a problem in uses for food-stuff from a viewpoint of safety because of aromatic hydrocarbons such as benzene and toluene which are described as examples of the water-insoluble organic solvents. Furthermore, in

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fatty acid esters composition of a polyglycerine, and uses... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fatty acid esters composition of a polyglycerine, and uses..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fatty acid esters composition of a polyglycerine, and uses... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2505913

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.