Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymers from only ethylenic monomers or processes of...
Reexamination Certificate
2003-02-20
2004-10-12
Wu, David W. (Department: 1713)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Polymers from only ethylenic monomers or processes of...
C526S328000, C526S328000, C524S556000, C524S724000, C525S221000, C525S327400, C525S327700, C525S327600
Reexamination Certificate
active
06803439
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The subject invention pertains to polycarboxy polymer binding resins having improved water absorption properties. More particularly, the subject invention pertains to thermosetting, acrylic acid-based binder resins which cure by crosslinking with a poly-functional, carboxyl group-reactive curing agent, which binders containing such resins exhibit minimal water absorption. Such binders are useful as replacements for formaldehyde-based binders in non-woven fiberglass goods.
2. Description of the Related Art
Fiberglass binders have a variety of uses ranging from stiffening applications where the binder is applied to woven or non-woven fiberglass sheet goods and cured, producing a stiffer product; thermo-forming applications wherein the binder resin is applied to sheet or lofty fibrous product following which it is dried and optionally B-staged to form an intermediate but yet curable product; and to fully cured systems such as building insulation.
Fibrous glass insulation products generally comprise matted glass fibers bonded together by a cured thermoset polymeric material. Molten streams of glass are drawn into fibers of random lengths and blown into a forming chamber where they are randomly deposited as a mat onto a traveling conveyor. The fibers, while in transit in the forming chamber and while still hot from the drawing operation, are sprayed with an aqueous binder. A phenol-formaldehyde binder has been used throughout the fibrous glass insulation industry. The residual heat from the glass fibers and the flow of air through the fibrous mat during the forming operation are generally sufficient to volatilize the majority of the water from the binder, thereby leaving the remaining components of the binder on the fibers as a viscous or semi-viscous high solids liquid. The coated fibrous mat is transferred to a curing oven where heated air, for example, is blown through the mat to cure the binder and rigidly bond the glass fibers together.
Fiberglass binders used in the present sense should not be confused with matrix resins which are an entirely different and non-analogous field of art. While sometimes termed “binders”, matrix resins act to fill the entire interstitial space between fibers, resulting in a dense, fiber reinforced product where the matrix must translate the fiber strength properties to the composite, whereas “binder resins” as used herein are not space-filling, but rather coat only the fibers, and particularly the junctions of fibers. Fiberglass binders also cannot be equated with paper or wood product “binders” where the adhesive properties are tailored to the chemical nature of the cellulosic substrates. Many such resins, e.g. urea/formaldehyde and resorcinol/formaldehyde resins, are not suitable for use as fiberglass binders. One skilled in the art of fiberglass binders would not look to cellulosic binders to solve any of the known problems associated with fiberglass binders.
Binders useful in fiberglass insulation products generally require a low viscosity in the uncured state, yet characteristics sufficient to form a rigid thermoset polymeric mat for the glass fibers when cured. A low binder viscosity in the uncured state is required to allow the mat to be sized correctly. Also, viscous binders tend to be tacky or sticky and hence they lead to accumulation of fiber on the forming chamber walls. This accumulated fiber may later fall onto the mat causing dense areas and product problems. A binder which forms a rigid solid when cured is required so that a finished fiberglass thermal insulation product, when compressed for packaging and shipping, will recover to its as-made vertical dimension when installed in a building.
From among the many thermosetting polymers, numerous candidates for suitable thermosetting fiberglass binder resins exist. However, binder-coated fiberglass products are often of the commodity type, and thus cost becomes a driving factor, generally ruling out such resins as thermosetting polyurethanes, epoxies, and others. Due to their excellent cost/performance ratio, the resins of choice in the past have been phenol/formaldehyde resins. Phenol/formaldehyde resins can be economically produced, and can be extended with urea prior to use as a binder in many applications. Such urea-extended phenol/formaldehyde binders have been the mainstay of the fiberglass insulation industry for years, for example.
Over the past several decades however, minimization of volatile organic compound emissions (VOCs) both on the part of the industry desiring to provide a cleaner environment, as well as by Federal regulation, has led to extensive investigations into not only reducing emissions from the current formaldehyde based binders, but also into candidate replacement binders. For example, subtle changes in the ratios of phenol to formaldehyde in the preparation of the basic phenol/formaldehyde resole resins, changes in catalysts, and addition of different and multiple formaldehyde scavengers, has resulted in considerable improvement in emissions from phenol/formaldehyde binders as compared with the binders previously used. However, with increasingly stringent Federal regulations, more and more attention has been paid to alternative binder systems which are free from formaldehyde.
One such candidate binder system employs polymers of acrylic acid as a first component, and a polyol such as glycerin or a modestly oxyalkylated glycerin as a curing or “crosslinking” component. The preparation and properties of such poly(acrylic acid)-based binders, including information relative to the VOC emissions, and a comparison of binder properties versus urea formaldehyde binders is presented in “Formaldehyde-Free Crosslinking Binders For Non-Wovens”, Charles T. Arkins et al., TAPPI JOURNAL, Vol. 78, No. 11, pages 161-168, November 1995. The binders disclosed by the Arkins article, appear to be B-stageable as well as being able to provide physical properties similar to those of urea/formaldehyde resins.
U.S. Pat. No. 5,340,868 discloses fiberglass insulation products cured with a combination of a polycarboxy polymer, a &bgr;-hydroxyalkylamide, and an at least one trifunctional monomeric carboxylic acid such as citric acid. The specific polycarboxy polymers disclosed are poly(acrylic acid) polymers. See also, U.S. Pat. No. 5,143,582.
U.S. Pat. No. 5,318,990 discloses a fibrous glass binder which comprises a polycarboxy polymer, a monomeric trihydric alcohol and a catalyst comprising an alkali metal salt of a phosphorous-containing organic acid.
Published European Patent Application EP 0 583 086 A1 appears to provide details of polyacrylic acid binders whose cure is catalyzed by a phosphorus-containing catalyst system as discussed in the Arkins article previously cited. Higher molecular weight poly(acrylic acids) are stated to provide polymers exhibiting more complete cure. See also U.S. Pat. Nos. 5,661,213; 5,427,587; 6,136,916; and 6,221,973.
Some polycarboxy polymers have been found useful for making fiberglass insulation products. Problems of clumping or sticking of the glass fibers to the inside of the forming chambers during the processing, as well as providing a final product that exhibits the recovery and rigidity necessary to provide a commercially acceptable fiberglass insulation product, have been overcome. See, for example, U.S. Pat. No. 6,331,350. The thermosetting acrylic resins have been found to be more hydrophilic than the traditional phenolic binders, however. This hydrophilicity can result in fiberglass insulation that is more prone to absorb liquid water, thereby possibly compromising the integrity of the product. Also, the thermosetting acrylic resins now being used as binding agents for fiberglass have been found to not react as effectively with silane coupling agents of the type traditionally used by the industry. Overcoming these problems will help to better utilize polycarboxy polymers in fiberglass binders.
Accordingly, it is an objective of the present invention to provide a novel, non-phenol/formal
Johns Nanville International, Inc.
Sastri Satya
Touslee Robert D.
Wu David W.
LandOfFree
Fatty acid containing fiberglass binder does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fatty acid containing fiberglass binder, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fatty acid containing fiberglass binder will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3306505