Fat-like agents for low calorie food compositions

Food or edible material: processes – compositions – and products – Surface coated – fluid encapsulated – laminated solid... – Isolated whole seed – bean or nut – or material derived therefrom

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C426S573000, C426S804000

Reexamination Certificate

active

06689405

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to an improved form of non-nutritive, fat-like agents for use in the preparation of low-calorie food compositions. More particularly, this invention relates to dry, microreticulated or microfibrillated microcrystalline cellulose compositions which are readily dispersible in water for use as fat-like substitutes in the preparation of aqueous-based low-calorie foodstuffs. Still more particularly, this invention relates to compositions consisting essentially of agglomerates of microreticulated or microfibrillated cellulose and the hydrocolloids xanthan gum or a carboxymethylcellulose in a dry, particulate form. The resulting composition provides a fat-like consistency, appearance, and mouthfeel when reconstituted as a component in aqueous-based low calorie foods, particularly such foods as salad dressings, dairy products such as frozen desserts, and the like.
By the term “agglomerate”, as used herein, is meant a stable, substantially physical mixture of at least two components in its wet or dry state whose components are loosely bound to each other when dried, but disperse into its component parts when reconstituted in water under typical food processing conditions. This physical state is to be distinguished over “aggregates”, which are firmly bound components in particle form which remain bonded to each other even if reconstituted in water under typical food processing conditions.
The use of fat-like substitutes in the preparation of low-calorie food compositions is now generally well-established in the art. See, for example, U.S. Pat. No. 5,192,569 (McGinley, et al.), as well as those set forth in the background description of U.S. Pat. No. 5,011,701 (Baer et al.).
More particularly, in that latter patent, i.e. U.S. Pat. No. 5,011,701, there is described a fat substitute material comprising a microreticulated form of microcrystalline cellulose and xanthan gum. As described therein, the term microreticulated microcrystalline cellulose (MRC) defines a highly sheared form of known microcrystalline cellulose (MCC) obtained by shearing an aqueous dispersion of about 3-10 wt. % of MCC under certain defined conditions, reagglomerating the resulting fragments under further high shear conditions to obtain an aqueous dispersion of MRC particles having a void volume of about 25 percent, and a particle size of from about 5-20 microns having a given particle size distribution.
To this aqueous, agglomerated MRC dispersion, according to the description in U.S. Pat. No. 5,011,701, may thereafter be separately added, along with other components, xanthan gum to stabilize the resulting aqueous dispersion which is then directly blended with selected food components to prepare a low fat or fat-free foodstuff.
The aqueous MRC composition which is mixed with xanthan gum and food components, while effective for the purpose intended in preparing low-calorie foodstuffs, nevertheless does not have substantial economic usefulness and flexibility in commerce in view of the need to admix it directly with the food components in the form of its aqueous dispersion as it is made, rather than in a redispersible dry form. That is to say, as will be shown in Example 4 below, attempts to dry the aqueous MRC dispersion by conventional means results in aggregates of material which cannot satisfactorily be redispersed in an aqueous medium for further mixture with food components.
SUMMARY OF THE INVENTION
In accordance with the present invention there is now provided an improved food additive composition comprising dry, readily water-dispersible, agglomerates in particulate form, said particles consisting essentially of microreticulated microcrystalline cellulose (MRC) or microfibrillated microcrystalline cellulose (MFC) in a predominant amount by weight and a hydrocolloid selected from xanthan gum and a carboxymethylcellulose (CMC), the hydrocolloid being present in amounts sufficient to provide effective coverage of the MRC or MFC. The invention is directed also to methods of preparing low-calorie food compositions containing the aforesaid compositions, as well as to the food compositions themselves.
DETAILED DESCRIPTION OF THE INVENTION
The microcrystalline cellulose employed in the preparation of the MRC starting material of this invention should desirably but not necessarily be of colloidal size, i.e., it may have an average particle size of about 0.1-100 microns, depending upon how the MCC is prepared, and preferably a particle size distribution such that not more than about 10-40% of the particles are over about 0.2-0.5 micron size. Particles of this size and distribution are obtained by conventional means, as for example by hydrolysis of the cellulose pulp, followed by wet mechanical disintegration.
The extraction and processing of microcrystalline cellulose from wood pulp or fiber is well known in the art as described, for example, in U.S. Pat. Nos. 3,539,365 and 4,263,334 (above). For purposes of this process, the MCC can be in the form of a mechanically disintegrated aqueous slurry or wetcake having a solids content ranging from about 5 to 45% by weight, depending upon whether a high solids attrition is employed, e.g. about 30-45% solids, or a low solids, i.e. wet solids milling process (e.g. about 5-10% solids) known to the art is employed. See, for example, O. A. Battista, “Microcrystalline Polymer Science”, pp. 39, 40, McGraw-Hill Book Co., (1975), and U.S. Pat. No. 2,978,446. The preparation of MCC is also described in FMC Corporation Bulletins L-0786 AAPS (1986) and G-34 (1985). As described therein, microcrystalline cellulose wetcake obtained from wood pulp which has been hydrolyzed with acid in a known manner may be simply spray-dried to produce a non-colloidal, powered grade of cellulose (Avicel “PH” grade Cellulose, e.g., PH 101) or mechanically disintegrated to form a colloidal grade of cellulose (Avicel “RC/CL” grade cellulose, both available from FMC Corporation, Philadelphia, Pa.). Depending upon how the cellulose wetcake is treated, if at all, the particle size of these various grades may range from about 0.1 to about 10 microns for the colloidal grade, and from about 10 to 100 microns for the non-colloidal grades. It will be understood that these ranges, which may overlap somewhat, will determine the size of the resulting MCC.
The microreticulated form of microcrystalline cellulose employed herein may then be prepared from MCC in accordance with the examples below, as well as by the high shear methods described in U.S. Pat. No. 5,011,701 (above), which, again, is incorporated by reference, particularly the description in columns 5 and 6 thereof.
Alternatively there may be employed as the microcrystalline cellulose component of the composition claimed herein the microfibrillated microcrystalline cellulose (MFC) of U.S. Pat. No. 4,378,381 (Turbak et al.), or related patents, U.S. Pat. No. 4,374,702; U.S. Pat. No. 4,483,7343; or U.S. Pat. No. 4,452,721, all of which are incorporated herein by reference, and which describe a fibrillated cellulose which is also prepared from microcrystalline cellulose. This cellulose, (MFC), which is defined as having increased surface area, greater liquid absorption characteristics, and greater reactivity, is prepared, according to these patents, by passing a liquid suspension of fibrous cellulose through a small diameter orifice in which the suspension is subjected to a pressure drop of at least 3000 psi and a high velocity shearing action followed by a high velocity decelerating impact and repeating the passage of said suspension through the orifice until the cellulose suspension becomes a substantially stable suspension. The process converts the cellulose into microfibrillated cellulose without substantial chemical change. The resulting MFC is characterized in having a water retention value of over 280%, a settling volume after 60 minutes in a 0.5% by weight suspension in water of greater than 60% and a rate of degradation increase by hydrolysis at 60° C. in one molar hydrochloric acid at least twice as great

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fat-like agents for low calorie food compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fat-like agents for low calorie food compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fat-like agents for low calorie food compositions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3304698

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.