Electrical connectors – Preformed panel circuit arrangement – e.g. – pcb – icm – dip,... – Distinct contact secured to panel circuit
Reexamination Certificate
2002-10-10
2004-08-31
Nguyen, Truc (Department: 2833)
Electrical connectors
Preformed panel circuit arrangement, e.g., pcb, icm, dip,...
Distinct contact secured to panel circuit
C439S383000
Reexamination Certificate
active
06783376
ABSTRACT:
BACKGROUND OF THE INVENTION
The invention is directed to a fastening plate for fastening a component on a printed circuit board. The plate has means arranged on either the top or bottom side or surface facing printed circuit board fastening points for rigid fastening of the plate to the printed circuit board and has means arranged on the other of the top and bottom surface facing component fastening points for rigid fastening of the component to the fastening plate. The invention is also directed to a fastening arrangement having the fastening plate. Over and above this, the invention is directed to the employment of the fastening arrangement with the fastening plate.
Fastening plates of the species initially cited are known wherein the printed circuit board fastening points are directly connected to the component fastening points via the fastening plate. A largely rigid connection of the fastening points results therefrom.
The known fastening plates have the disadvantage that mechanical oscillations can be directly transmitted from the printed circuit board onto the component via the fastening plate. Due to the direct connection between the fastening points, this oscillation is hardly attenuated. This particularly takes effect where the printed circuit board with the component mounted on it is installed in oscillating systems, for example internal combustion motors of motor vehicles. The oscillatory load resulting therefrom can damage or even entirely destroy the component.
SUMMARY OF THE INVENTION
It is therefore a goal of the present invention to offer a fastening plate that largely avoids the transmission of mechanical oscillations from the printed circuit board onto the component.
This goal is inventively achieved by a fastening plate for fastening a component on a printed circuit board that comprises means for rigid fastening of the printed circuit board on the fastening plate. These means are arranged at the printed circuit board fastening points. The printed circuit board is to be arranged for fastening at one side of the fastening plate. In addition, the inventive fastening plate comprises means for the: rigid fastening of the component on the fastening plate. For fastening on the fastening plate, the component is to be arranged at one side of the fastening plate. In addition, the fastening plate comprises an incision that parts or separates the direct connection between a printed circuit board fastening point and a directly neighboring component fastening point.
The fastening of the component or, respectively, of the printed circuit board on the fastening plate can, for example, ensue with soldering or welding. The inventive fastening plate has the advantage that the flexural stiffness of the fastening plate is reduced by the incision, and as a result whereof the fastening plate can itself at least partially absorb the oscillatory energy potentially introduced from the printed circuit board. The oscillatory energy is thus no longer transmitted from the printed circuit board onto the component via the direct connection between a printed circuit board fastening point and a neighboring component fastening point.
The reduced transmission of oscillatory energy from the printed circuit board onto the component has the advantage that the fastening of the component on the fastening plate, for example a weld, is relieved. These fastening points are no longer destroyed as fast.
In addition, the inventive fastening plate has the advantage that, due to the reduced transmission of oscillations from the printed circuit board onto the component, the component itself or, respectively, oscillation-sensitive component parts situated in the component are also relieved.
The fastening of the fastening plate on the printed circuit board can, for example, ensue by means of pins of the plate projecting from the plane of the plate. These pins are plugged through corresponding holes in the printed circuit board and soldered there.
The fastening of the component on the fastening plate can advantageously ensue by welding. A fastening plate is therefore especially advantageous wherein weld surfaces suitable for welding a metal are arranged at the component fastening points.
In addition, a fastening plate that is electrically conductive is especially advantageous. Together with a further electrically conductive connection between fastening plate and printed circuit board, for example with the assistance of the aforementioned pins, which can be conductive, a two-pole electrical contact between printed circuit board and component can thus be realized by means of the fastening.
Such an electrically conductive fastening plate can, for example, be realized in that the fastening plate is fabricated of metal. For example, copper or a nickel-iron spring material as well come into consideration as the metals.
In addition, a fastening plate that is spring-elastic is especially advantageous since it is especially well-suited for absorbing and damping oscillations that proceed from the printed circuit board.
The incision of the fastening plate can be especially easily realized by means of a simple cutting when it proceeds from the edge of the fastening plate. In addition, a fastening plate is especially advantageous wherein the incision proceeds in the direction toward the center point of the fastening plate. Such a fastening plate has the advantage that, with the incision, the transport of the mechanical oscillatory energy also proceeds in the direction onto the center point of the fastening plate, for example towards the mid-point. As a result thereof, an optimally large part of or, respectively, nearly the entire fastening plate is involved in the oscillatory event, as a result whereof the damping properties are improved even further.
What is also achieved due to the course of the incision in the direction toward the center of the fastening plate is that an oscillation must first run into the inner part of the fastening plate in order to proceed from a printed circuit board fastening point to the neighboring component fastening point separated therefrom by the incision. The damping of the fastening plate is additionally improved by this long running distance.
In addition, a fastening plate is especially advantageous wherein the incision forms a planar recess in the fastening plate. Such a planar recess can, for example, be realized by cutting the fastening plate proceeding from the edge in the direction of the center of the fastening plate and by conducting the incision out from the inside of the fastening plate back to the edge of the fastening plate. Such a planar recess has the advantage that no tilting of the of the edge sections of the fastening plate formed by the incision is possible since the edges are spaced from one another. The fastening plate can thus oscillate unimpeded and optimally absorb the oscillatory energy introduced from the printed circuit board.
It is especially advantageous for an incision that proceeds from a point at the edge of the fastening plate into the inside of the fastening plate and from thence onto another point at the edge of the fastening plate when the incision is free of corners. Such a round incision or cutout has the advantage that no point for stress concentration or a stress raiser at the edge of the cutout in the fastening plate is formed by the incision. Such stress raiser would occur at locations at which the incision has corners. This lack of a stress raiser in the fastening plate also prevents a breakage of the fastening plate given especially high oscillatory amplitudes.
In addition, a fastening plate that comprises the shape of a circular disk is especially advantageous. Such a fastening plate is especially advantageous for fastening cylindrical components such as, for example, wound capacitors.
In addition, a fastening plate that comprises a center hole is especially advantageous. A contact pin of the component secured on the fastening plate can be conducted through this center hole and be contacted with the printed circuit board at the other side of the
Hebel Rainer
Minihoffer Rudolf
Will Norbert
EPCOS AG
Nguyen Truc
Schiff & Hardin LLP
LandOfFree
Fastening arrangement having a fastening plate and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fastening arrangement having a fastening plate and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fastening arrangement having a fastening plate and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3336087