Elongated-member-driving apparatus – With control means responsive to sensed condition – Work-responsive
Reexamination Certificate
1999-08-06
2001-08-07
Smith, Scott A. (Department: 3721)
Elongated-member-driving apparatus
With control means responsive to sensed condition
Work-responsive
C227S008000, C227S111000, C227S148000
Reexamination Certificate
active
06269996
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to systems and methods for driving fasteners, and more particularly to systems and methods for driving fasteners through an element or member to secure the element or member beside a previously-laid surface.
BACKGROUND OF THE INVENTION
The process of laying flooring is generally very time consuming and labor intensive. Depending upon the type of flooring being installed, the cost of flooring can vary significantly. Hardwood flooring is among the more expensive flooring types not only due to the cost of materials but also because hardwood flooring is typically difficult to install, requiring skilled labor and particular installation procedures for a satisfactory floor. An example of such flooring is hardwood gym flooring. The process of laying gym flooring is particularly difficult in that each individual board making up the floor must be precisely placed with respect to previously-laid flooring, forced into place with a mallet or other device, and then secured via one or more fasteners. With gym flooring and many other hardwood and non-hardwood flooring types, fasteners which are visible after flooring installation are unacceptable. Therefore, it is common practice (especially in the installation of hardwood and gym floors) to drive fasteners diagonally through a side edge of the flooring pieces or boards, which fasteners are thereafter covered from view when adjacent flooring pieces or boards are laid. Unfortunately however, the process of driving fasteners diagonally through each flooring piece or board is very labor intensive and is conventionally performed by hand or by a hand-held fastener driving device such as a nail gun or staple gun. This results in high labor costs and is a primary factor dictating the length of time necessary to install such flooring.
Many devices exist which increase the speed with which fasteners may be driven into a surface. Three such devices are disclosed in U.S. Pat. No. 4,084,738 issued to Schneider, U.S. Pat. No. 3,173,593 issued to Elliott, and U.S. Pat. No. 5,110,027 issued to Burlingame. Conventional fastener driving devices such as those disclosed in the Schneider, Elliott and Burlingame patents have a carriage or other structure which can be moved over a surface to drive fasteners into the surface. However, such devices are designed for use in driving nails or other fasteners in a vertical direction, and are therefore well-suited for roofing applications and for flooring applications in which the visibility of the fasteners is not a concern and/or vertically-driven fasteners are acceptable. However, these devices are not capable of driving fasteners at an angle with respect to the pieces or boards of flooring being laid, nor are they capable of driving fasteners in such a way as to hide them from view after surrounding flooring pieces or boards have been laid. Therefore, conventional fastener driving carriage devices are poorly suited for many flooring applications, including without limitation most hardwood flooring applications.
The difficulty in securing flooring pieces or boards is exacerbated by the precision required when driving fasteners into such elements. The process of driving a fastener into a side of a flooring piece or board requires much greater precision than simply driving a fastener vertically down through an upper surface of the piece or board. Conventional nail driving devices do not provide any structure or features for controlling firing angle and position and so therefore are not suitable for driving fasteners in this manner. Also, in many flooring systems flooring boards or pieces do not rest upon a continuous structure into which fasteners can be driven. Instead, the flooring boards or pieces are often laid and fastened atop a frame or other structure (a series of spaced sleepers or other framework). Fasteners driven into the flooring boards or pieces must therefore be aligned with portions of the frame or structure. Fastener alignment can be very difficult to accomplish, particularly because the frame or structure is usually partially blocked from view by the pieces or boards of flooring being laid. In some cases, the frame or structure is fully blocked from view by subflooring such as plywood paneling. Fastener alignment can be made even more difficult when a conventional fastener driving apparatus or carriage is employed such as disclosed in the Schneider, Elliott and Burlingame patents. Even where the portions of the subflooring are regularly spaced and where such apparatuses or carriages are operated to drive fasteners at regularly spaced intervals, measurement inaccuracies and inconsistencies in the underlying frame or structure still interfere with proper fastener alignment and placement.
In light of the problems and limitations of the prior art described above, a need exists for a fastener driving apparatus and method which can be used to quickly drive fasteners into flooring at a desired angle, which drives fasteners in a manner so that they are hidden from view after surrounding flooring has been laid, which preferably can be used to quickly and precisely drive fasteners in the sides of flooring pieces or boards, and which can accurately drive fasteners through flooring pieces or boards and into underlying framework or other such structure even if blocked from view. Each preferred embodiment of the present invention achieves one or more of these results.
SUMMARY OF THE INVENTION
The present invention utilizes a fastener driver mounted to a carriage movable across a flooring surface and responsive to one or more trigger devices for driving fasteners into a board or piece of flooring to secure the same to underlying structure. To permit fasteners to be driven at angles (particularly for driving fasteners into the sides of boards or pieces of flooring materials to hide the fasteners from view in the completed flooring), the fastener driver of one preferred embodiment is preferably mounted at an angle with respect to a fully vertical position and even more preferably is adjustable to change the angle at which the fastener driver drives the fasteners.
The carriage has at least one set of carriage motion elements which enable the carriage to move across the flooring. Preferably, the carriage motion elements include at least one carriage wheel positionable to roll across the flooring surface beside the board or piece of flooring being fastened. The carriage also preferably includes other carriage motion elements supporting a baseplate of the carriage to which the fastener driver is attached for movement over the flooring surface. To guide the fastener driving apparatus as it is moved along the board or piece of flooring being fastened, one or more carriage guide elements are preferably attached to the carriage or extend therefrom and are positioned to contact and run alongside the board or piece of flooring being fastened. More preferably, the carriage guide element is a roller attached to the baseplate and rolling alongside and against the board or piece of flooring. Each roller employed thereby positions the fastener driver a desired substantially constant distance with respect to the side edge of the board or piece of flooring for consistent positioning and driving of fasteners into the board or piece of flooring. Most preferably, the carriage motion elements (e.g., the carriage wheels) are canted with respect to the path of motion of the apparatus to exert a lateral force against the carriage and to thereby maintain contact of the carriage guide element(s) with the side edge of the board or piece of flooring being fastened.
The fastener driving apparatus of the present invention also preferably has a handle assembly for enabling a user to conveniently push the apparatus along the board or piece of flooring being fastened. Preferably, the handle assembly is removable for easy transport or storage of the apparatus.
A circuit in the apparatus is employed to control fastener driving operations. The circuit can be pneumatic, hydraulic, electrical, or oth
Robbins, Inc.
Smith Scott A.
Wood Herron & Evans L.L.P.
LandOfFree
Fastener driving apparatus and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fastener driving apparatus and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fastener driving apparatus and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2545917