Fast edge detection system tolerant of high degree of...

Registers – Coded record sensors – Particular sensor structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C235S462250

Reexamination Certificate

active

06499662

ABSTRACT:

FIELD OF THE INVENTION
The field of the present invention relates to data reading devices, such as scanners and barcode reading devices. In particular, barcode readers are described herein which employ methods and apparatus for improved edge detection for more accurately measuring bar and space widths under high Inter-Symbol Interference (hereafter “ISI”) conditions.
BACKGROUND
A barcode label comprises a series of parallel dark bars of varying widths with intervening light spaces, also of varying widths. The information encoded in the barcode is represented by the specific sequence of bar and space widths, the precise nature of this representation depending on the particular barcode symbology in use.
Barcode reading methods typically comprise the generation of an electronic signal wherein signal voltage alternates between two preset voltage levels, one representative of the dark bars and the other representative of the light spaces. The temporal widths of these alternating pulses of high and low voltage levels correspond to the spatial widths of the bars and spaces. The temporal sequence of alternating voltage pulses of varying widths comprising the electronic signal is presented to an electronic decoding apparatus for decoding of the information encoded in the barcode.
A variety of common and well developed methods exist for generating the electronic signal by converting the spatial bar/space sequences into temporal high/low voltage sequences, i.e., barcode reading. Common types of barcode readers include spot scanners and line scanners.
Spot scanners comprise barcode reading systems wherein a source of illumination, the reading spot, is moved (i.e., scanned) across the barcode while a photodetector monitors the reflected or backscattered light. In one type of spot scanner system, typically referred to as a wand reader, the reading spot of the scanner is manually moved across the barcode. In another type of spot scanner system the reading spot of the scanner is automatically moved across the barcode in a controlled pattern. In any of the spot scanner systems, the path followed by the scanned illumination beam is typically referred to as a scan line.
The illumination source in spot scanners is typically a coherent light source (such as a laser), but may comprise a non-coherent light source (such as a light emitting diode). A laser illumination source, however, offers the advantage of high intensity illumination over a small area which may allow barcodes to be read over a large range of distances from the barcode scanner (large depth of field) and under a wide range of background illumination conditions. The photodetector associated with spot scanners may generate a high current when a large amount of light scattered from the barcode impinges on the detector, as from a light space, and likewise may produce a lower current when a small amount of light scattered from the barcode impinges on the photodetector, as from a dark bar.
In automatic spot scanning systems, a scanning mechanism, or scan engine, is utilized to automatically scan the illumination beam across the barcode. Such scanning mechanism may comprise a rotating mirror facet wheel, a dithering mirror, or other means for repetitively moving the illumination beam.
In addition to a scan engine, a barcode scanner may also employ a set of scan pattern generating optics to produce a multiplicity of scan lines in various directions from the scanner and at varying orientations, thereby allowing barcodes to be read over a large angular field of view and over a wide range of orientations (i.e., a multi-dimensional scan pattern). The scan pattern generating optics typically comprise a set of mirrors aligned at varying angles, each of which intercepts the illumination beam during a portion of its motion and projects it into the region in front of the barcode scanner, hereinafter referred to as the scan volume. Each mirror in the set, in conjunction with the scan engine, produces a scan line at a particular position and at a particular orientation.
Early prior art spot scanner systems depended upon individual scan lines extending across the entire barcode for the barcode to be successfully read. These systems presented difficulties and inefficiencies in real-time, practical applications wherein the orientation of a barcode vis-a-vis the scanner was hard to control. Accordingly, specialized piecing mechanisms, comprising software or electronics, have been developed that are capable of taking partial portions of barcodes and assembling them into a complete code, a process commonly known as stitching. Further details regarding exemplary stitching methods and systems may be found in U.S. Pat. No. 5,493,108, entitled “Method and Apparatus for Recognizing and Assembling Optical Code Labels” and issued in the name of inventors Craig D. Cherry and Donald D. Dieball, which patent is owned by the owner of the present application and is hereby incorporated by reference as if fully set forth herein.
With respect to line scanner systems, an entire barcode is focused onto a multi-element linear or areal photodetector array and the image of the barcode is detected. The photodetector array may comprise a CCD array (charge coupled device), a CMOS active or passive pixel sensor array, or other multi-element photodetector array. This type of reader may also include a light source to illuminate the barcode to provide the required signal response corresponding to the image. The imaging optics which produce an image of the barcode on the photodetector array can alternatively be thought of as projecting an image of the photodetector array (a “virtual scan line”) into the scan volume in a manner completely analogous to the real scan line produced by a spot scanner. Further, scan pattern generating optics may be used to project multiple virtual scan lines into the scan volume in various directions and at varying orientations, thereby generating a virtual scan pattern, once again completely analogous to the real scan pattern produced by a spot scanner. Virtual scan pattern systems are further described in U.S. Pat. No. 5,446,271, entitled “Omnidirectional Scanning Method and Apparatus” and issued in the name of inventors Craig D. Cherry and Robert J. Actis, which patent is owned by the owner of the present application and is hereby incorporated by reference as if fully set forth herein.
Regardless of which of the barcode readers described in the preceding paragraphs is used, a raw electronic signal is generated from which the relative widths of the bars and spaces must be extracted. High-to-low or low-to-high transitions (i.e., edges) in the electronic signal voltage may be detected by any of a number of means well known in the art. A common and well known technique for edge detection is second derivative signal processing. In second derivative signal processing systems, optical edges result in peaks in the first derivative signal, and zero crossings in the second derivative signal. In such systems, zero crossings of the second derivative of the electronic signal are found during selected timing intervals as a means of detecting valid transitions. Examples of this technique are described in U.S. Pat. No. 4,000,397 entitled “Signal Processor Method and Apparatus” issued in the name of Hebert et al., and in U.S. Pat. No. 5,925,868 entitled “Method and Apparatus for Determining Transitions Between Relatively High and Low Levels in an Input Signal” issued in the name of Arends et al., and in U.S. Pat. No. 5,923,023 entitled “Method and Apparauts for Detecting Transitions in an Input Signal” also issued in the name of Arends et al. Each of the three foregoing patents are assigned to the assignee of the present application, and each is hereby incorporated by reference as if fully set forth herein. U.S. Pat. No. 4,000,397 describes the “classic” second derivative edge detector for bar code scanners, wherein zero crossings of the second derivative signal are considered valid edges if, at the moment of crossing, the absolute value of the first derivative signal ex

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fast edge detection system tolerant of high degree of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fast edge detection system tolerant of high degree of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fast edge detection system tolerant of high degree of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2978658

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.