Fast convergence with topology switching

Multiplex communications – Fault recovery

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S244000

Reexamination Certificate

active

06678241

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to computer networks, and more specifically, to a method and apparatus for quickly identifying and selecting loop-free topologies in computer networks.
BACKGROUND OF THE INVENTION
A computer network typically comprises a plurality of interconnected entities. An entity may consist of any device, such as a computer or end station, that “sources” (i.e., transmits) or “sinks” (i.e., receives) messages such as data frames. A common type of computer network is a local area network (“LAN”) which typically refers to a privately owned network within a single building or campus. LANs typically employ a data communication protocol (LAN standard), such as Ethernet, FDDI or token ring, that defines the functions performed by the data link and physical layers of a communications architecture (i.e., a protocol stack). In many instances, several LANs may be interconnected by point-to-point links, microwave transceivers, satellite hook-ups, etc. to form a wide area network (“WAN”) or intranet that may span an entire country or continent.
One or more intermediate network devices are often used to couple LANs together and allow the corresponding entities to exchange information. For example, a bridge may be used to provide a “bridging” function between two or more LANs. Alternatively, a switch may be utilized to provide a “switching” function for transferring information among a plurality of LANs or end stations. Typically, the bridge or switch is a computer and includes a plurality of ports that couple the device to the LANs or end stations. Ports used to couple switches to each other are generally referred to as a trunk ports, whereas ports used to couple a switch to LANs, end stations, servers, etc. are generally referred to as access ports. The switching function includes receiving data from a sending entity at a source port and transferring that data to at least one destination port for forwarding to the receiving entity. Switches and bridges typically store address information for use in reaching particular network entities in a block of memory called a filtering database.
Additionally, most computer networks are either partially or fully meshed. That is, they include redundant communications paths so that a failure of any given link or device does not isolate any portion of the network. The existence of redundant links, however, may cause the formation of circuitous paths or “loops” within the network. Loops are highly undesirable because data frames may traverse the loops indefinitely. Furthermore, because switches and bridges replicate (i.e., flood) frames whose destination port is unknown or which are directed to broadcast or multicast addresses, the existence of loops may cause a proliferation of data frames that effectively overwhelms the network.
Spanning Tree Algorithm
To avoid the formation of loops, most bridges and switches execute a spanning tree algorithm which allows them to calculate an active network topology that is loop-free (i.e., a tree) and yet connects every pair of LANs within the network (i.e., the tree is spanning). The Institute of Electrical and Electronics Engineers (IEEE) has promulgated a standard (the 802.1D standard) that defines a spanning tree protocol to be executed by 802.1D compatible devices. In general, by executing the IEEE spanning tree protocol, bridges elect a single bridge to be the “root” bridge. Since each bridge has a unique numerical identifier (bridge ID), the root is typically the bridge with the lowest bridge ID. In addition, for each LAN coupled to more than one bridge, only one (the “designated bridge”) is elected to forward frames to and from the respective LAN. The designated bridge is typically the one closest to the root. Each bridge also selects one port (its “root port”) which gives the lowest cost path from that bridge to the root. The root ports and designated bridge ports are selected for inclusion in the active topology and are placed in a forwarding state so that data frames may be forwarded to and from these ports and thus onto the corresponding paths or links of the network. Ports not included within the active topology are placed in a blocking state. When a port is in the blocking state, data frames will not be forwarded to or received from the port. A network administrator may also exclude a port from the spanning tree by placing it in a disabled state. The forwarding and blocking states are stable spanning tree port states in that a port may remain in these states indefinitely (i.e., there is no prescribed limit on the time that can be spent in either of these states).
To obtain the information necessary to run the spanning tree protocol, bridges exchange special messages called configuration bridge protocol data unit (BPDU) messages. BPDU messages carry information used to execute the spanning tree protocol. For example, BPDU messages carry a root identifier, a root path cost, a bridge identifier, and a port identifier, among other information. The root identifier is the numeric identifier for the bridge assumed to be the root and the bridge identifier is the numeric identifier of the bridge sending the BPDU. The root path cost is a value representing the cost to reach the assumed root from the port on which the BPDU is sent and the port identifier is the numeric identifier of the port on which the BPDU is sent.
Upon start-up, each bridge initially assumes itself to be the root and generates and transmits BPDU messages accordingly. Upon receipt of a BPDU message from a neighboring device, the message's contents are examined and compared with similar information (e.g., assumed root and lowest root path cost) stored by the receiving bridge. If the information from the received BPDU is “better” than the stored information, the bridge adopts the better information and uses it in the BPDUs that it sends (adding the cost associated with the receiving port to the root path cost) from its ports, other than the port on which the “better” information was received. Although BPDU messages are not forwarded by bridges, the identifier of the root is eventually propagated to and adopted by all bridges as described above, allowing them to select their root port and any designated port(s).
In order to adapt the active topology to failures, bridges associate a timer with the BPDU information stored for each port. If the age of any stored BPDU information reaches a so-called maximum age, the corresponding BPDU information is considered to be stale and is discarded by the bridge. Normally, each bridge replaces its stored BPDU information every hello time, which is the frequency at which the root sends new BPDU messages, thereby preventing it from being discarded and maintaining the current active topology. If a bridge stops receiving BPDU messages on a given port (indicating a possible link or device failure), it will continue to increment the respective message age value until it reaches the maximum age threshold. The bridge will then discard the stored BPDU information and proceed to re-calculate the root, root path cost and root port by transmitting BPDU messages utilizing the next best information it has. The maximum age value used within the bridged network is typically set by the root, which enters a selected value in its BPDU messages. Neighboring bridges copy this value into their BPDU messages, thereby propagating the selected value throughout the network. The default maximum age value under the IEEE standard is twenty seconds.
As BPDU information is up-dated and/or timed-out and the active topology is re-calculated, ports may transition from the blocking state to the forwarding state and vice versa. That is, as a result of new BPDU information, a previously blocked port may learn that it should be in the forwarding state (e.g., it is now the root port or a designated port). Rather than transition directly from the blocking state to the forwarding state, ports transition through two or more intermediary or transitory states, such as a listening state and a learnin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fast convergence with topology switching does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fast convergence with topology switching, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fast convergence with topology switching will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3215365

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.