Fast charger for high capacity batteries

Electricity: battery or capacitor charging or discharging – Battery or cell charging – Pulsed

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06803746

ABSTRACT:

FIELD OF THE INVENTION
This invention pertains to fast charging of high capacity batteries, in particular to an apparatus and electrical circuits for fast charging high capacity batteries, methods for battery charging, and methods and software for controlling the delivery of voltage and current to high capacity batteries during fast charging.
BACKGROUND
“Fast charging” refers herein to charging a battery at a rate of greater than 30 Amperes per 100 Ampere-hours (“Ahrs”) of battery capacity. A goal of fast charging is to bring the state of charge (“SOC”) of a battery from 30% to 80% of full charge in less than about 1.5 hours. Conventional battery chargers typically operate at charging rates that are at or below 20A per 100 Ahrs of battery capacity, their charging rate decreases early in the charge cycle, and 8-12 hours may be required to restore a battery to full charge.
Previously, with conventional chargers, the time required for recharging has significantly inconvenienced users of high capacity batteries when the battery-powered equipment needs to remain in continuous service. “High capacity batteries” refers herein to batteries of greater than about 100 Ahrs capacity. For example, industrial users for battery-powered material handling equipment such as forklifts, electric carts, and the like have had to trade out batteries for recharging, remove them from vehicles, typically in a central battery room at some distance across the physical plant. Therefore conventional charging results in a number of disadvantages for the industrial user: loss of employee time for non-productive tasks; safety issues due to additional truck travel away from normal work areas within the plant and the need to handle heavy batteries; increased capital expenditures for the two or more batteries required per piece of equipment; and operation of battery-powered equipment at a low SOC, hence higher current, resulting in increased vehicle maintenance. Fast charging has the potential to increase employee productivity by eliminating battery change-outs; increasing safety by eliminating cross-plant trips for battery change-outs and the need for frequent handling of heavy batteries; decreasing capital expenditures by creating a 1 to 1 battery to equipment ratio; and decreasing vehicle maintenance costs because the batteries are operated at higher SOC.
Recreational users of high capacity batteries, such as electric golf carts, have had to contend with low rate battery chargers that require a spent cart to remain at the charge station until the next day. With fast charging, the cart could be made usable in less than 1.5 hours. This capability could also reduce the total number of carts needed in the recreational operation and thereby significantly reduce capital expenditures.
Automotive users of high capacity batteries would also benefit from fast charging of batteries by being able to enjoy fast recharge rates to bring their electric automobile batteries back up. A fast charger in the garage would bring back up the family auto after the commute home to allow a drive to the mall or soccer field in the evening, which may otherwise not be possible in the absence of fast charging. Fast chargers in parking areas could also be used to restore automobile batteries to high SOC levels.
Fast charging could change the way we live by turning the battery, in effect, into an electrochemical “gas tank”. As fast charge battery technology progresses, and batteries with the ability to accept higher rates of charging become available, higher power fast charging becomes even more desirable. Fast charging has the potential to lower battery recharge times dramatically and become an enabling technology for electric motive power applications.
The majority of currently available high rate chargers fall into two categories—ferro-resonant, and silicon controlled rectifier (SCR) phase control. These chargers contain an input section, power conversion section, and an output section. The input section receives an input three-phase supply voltage and conditions this input for coupling to the power conversion section. The power conversion section converts the coupled input to a desired output voltage. Lastly, the output section couples the voltage from the power conversion section with rectifying diodes and filter if applicable.
FIG. 1
(PRIOR ART) shows a typical three-phase AC input ferro-resonant charger circuit
10
of the prior art. This circuit includes input transformers with one primary and two secondary circuits. One secondary circuit is the RC circuit with resonant winding
1
as shown, and the other secondary circuit includes a winding
2
coupled to the battery via rectifying diodes
3
. The transformers are arranged to charge only one battery voltage.
The ferro-resonant style charger described above has a number of inherent deficiencies that limit its practical utility. If a user has more than one battery and they are not the same voltage, two different ferro-resonant chargers will be required. Another inherent problem is the different Ampere-hour ratings of various batteries. A manual change is required to tune the ferro-resonant charger to accommodate the various Ampere-hour ratings, thereby increasing the time and complexity of the charging operation. In addition, the selection range is limited for such modifications to accommodate different Ahr battery ratings. The limited control of output voltage that is characteristic of ferro-resonant chargers also prevents maximum charge rates from being achieved throughout the entire charge cycle. Further, ferro-resonant chargers are unable to take significant corrective action to compensate for supply voltage variations. Because the output of the charger is rectified from the ferro-resonant transformers, a large amount of AC voltage is supplied to the battery. This AC component causes extra heating within the battery and presents a thermal management issue that is of particular concern in the application of ferro-resonant chargers to high rate charging. Self-heating occurs in the transformer primary and secondary as well as the rectifying diodes of the ferro-resonant charger. In the ferro-resonant charger circuitry (see FIG.
1
), the resonant secondary winding
1
puts all of the energy in the resistor-capacitor, which makes no contribution to delivery of energy to the battery. These various shortcomings cause the ferro-resonant charger to be inefficient in operation, inflexible in voltage output, and non-optimal in its charging profile.
A second major type of prior art charger is the silicon-controlled rectifier (SCR) phase control charger, for which an electrical schematic diagram is shown in
FIG. 2
(PRIOR ART). SCR chargers receive three-phase supply voltage, shown entering the AC input conditioning module
12
in
FIG. 2
, and couple this input to the power conversion section comprising the SCR switch matrix
20
. The SCR switch matrix, coupled to phase controller/driver module
14
, converts the input to an output waveform that feeds the output section, which preferably includes a large inductive filter
21
. Because the SCR matrix is phase-controlled to obtain the desired output, the output inductor must filter a 360 Hertz distorted AC waveform. This circumstance requires the inductor to be large and expensive. If a smaller, less costly inductor is employed, the additional 360 Hertz AC ripple component superimposed on the DC voltage from the charger will cause heating within the battery load and degrade the power factor of the charger. The AC component effectively serves as an added heat source for the internal resistance of the battery.
SCR chargers are able to accommodate multiple voltage outputs by phase control of the SCR switch matrix. The transformer output voltage is selected to effectively charge the highest voltage battery anticipated. As a result, the power factor of such charger is adversely affected when the charger is used to charge lower voltage batteries.
FIG. 2A
depicts the SCR switch matrix phase control duty cycle, and shows that for lower voltage bat

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fast charger for high capacity batteries does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fast charger for high capacity batteries, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fast charger for high capacity batteries will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3275784

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.