Fast acquisition of GPS signal

Communications: directive radio wave systems and devices (e.g. – Directive – Including a satellite

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C342S357490

Reexamination Certificate

active

06778136

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field
This invention relates generally to protocols and, in particular, to acquisition of global positioning signal.
2. Related Art
The global positioning satellite (GPS) system is a satellite based navigation system having a network of 24 satellites, plus on orbit spares, orbiting 11,000 nautical miles above the Earth. Each satellite in the system orbits the Earth every twelve hours.
A prime function of GPS satellites is to serve as a clock that keeps GPS time. Each satellite derives a signal from an on board 10.23 MHz Cesium atomic clock. GPS time is kept in terms of seconds and weeks since Jan. 6, 1980. There are 604,800 seconds per week. Consequently, GPS time is stated in terms of a time of week (TOW) and a week number. TOW ranges from 0 to 604800. The week number started with week zero and is currently in excess of 1000 weeks. The TOW can have a fractional part, such as in the real time clock, where the resolution is {fraction (1/32,768)}
th
of a second. GPS time is fundamental to the GPS system. At each GPS satellite, the time of transmission of each chip is controlled down to a few nanoseconds. Consequently, knowledge of precise GPS time allows one to know exactly what chip of a satellite's waveform is being transmitted at any given time.
Each satellite transmits a GPS spread spectrum signal having an individual pseudo noise (PN) code. By transmitting several GPS signals over the same spectrum with each GPS signal having distinctly different PN coding sequences, the satellites may share the same bandwidth without interfering with each other. The PN codes used in the GPS system are 1023 bits long and are sent at a rate of 1.023 megabits per second, yielding a time mark, called a “chip” approximately once every micro-second. The sequence repeats once every millisecond and is called the course acquisition code (C/A code). Every 20th cycle the C/A code can change phase and is used to encode a 1500 bit long frame of data that contains a precise orbital description for the transmitting satellite, called ephemeris data, and approximate orbital descriptions for all satellites in orbit, called almanac data. The ephemeris data repeat each frame, while the almanac data are distributed over 25 frames before repeating. Various other data are also included in the overall frame structure.
There are 32 PN codes designated by the GPS authority for use in orbiting satellites. Additional codes are designated for other purposes. Twenty-four PN codes are assigned to current satellites in orbit. The remaining PN codes are spare codes that may be used in new satellites to replace old or failing satellites. A GPS receiver may, using the different PN code sequences, search the signal spectrum looking for a match. If the GPS receiver finds a match, then it is able to identify the satellite that generated the GPS signal.
GPS receivers may use a variant of radio direction finding (RDF) methodology, called triangulation, in order to determine the position on the Earth of the GPS receiver. The position determination is different from the RDF technology in that the radio beacons are no longer stationary; they are satellites moving through space at a speed of about 1.8 miles per second as they orbit the Earth. By being spaced based, the GPS system can be used to establish the position of virtually any point on Earth using a triangulation method.
The triangulation method depends on the GPS receiver units obtaining a time signal from multiple GPS satellites enabling the distance to each satellite to be calculated. If, for example, the GPS satellite is 11,000 nautical miles from the GPS receiver, then the GPS receiver must be somewhere on a location sphere having a radius of 11,000 nautical miles from the GPS satellite. When the GPS receiver ascertains the position of a second GPS satellite, then the GSP receiver calculates its location based on a location sphere around the second GPS satellite. The possible location of the GPS receiver on the two spheres lies at there intersects and forms a circle. To further resolve the location of the GPS receiver, the distance from a third GPS satellite to the GPS receiver is determined to be a location sphere around the third GPS satellite. The location sphere of the third satellite intersects the location circle produced by the intersection of the location sphere of the first two GPS satellites at just two points. By determining the location sphere of one more GPS satellite, whose location sphere will intersect one of the two possible location points, the precise position of the GPS receiver is determined. As a consequence of the GPS system, the exact time may also be determined, because there is only one time offset that can account for the positions of all the satellites. The triangulation method may yield positional accuracy on the order of 30 meters, however the accuracy of GPS position determination may be degraded due to signal strength and multipath reflections of the satellite signals.
GPS receivers may have visibility of as many as 12 GPS satellite signals at one time at the surface of the earth. The number of orbiting satellites that are visible depends on the location of the receiver and the locations of the satellites at a given point in time. The number visible in an unobstructed location may vary from approximately 5 to 12 satellites. In certain environments such as a canyon, some GPS satellites may be blocked out, and the GPS position determining system may depend for position information on satellites that have weaker signal strengths, such as GPS satellites near the horizon. In other cases overhead foliage may reduce the signal strength of the GPS satellites that are received by the GPS receiver unit. In either case the signal strength is reduced.
There are multiple ways of using radio spectrum to communicate. For example in frequency division multiple access (FDMA) systems, the frequency band is divided into a series of frequency slots and different transmitters are allotted different frequency slots. In time division multiple access (TDMA) systems, the time that each transmitter may broadcast is limited to a time slot, such that transmitters transmit their messages one after another during an allotted period. Furthermore, the frequency upon which each transmitter transmits in a TDMA system may be a constant frequency or may be continuously changing (commonly referred to as frequency hopping).
A third way of allotting the radio spectrum to multiple users is through the use of code division multiple access (CDMA) also known as spread spectrum communication. In a CDMA system, all users transmit on the same frequency band all of the time. Each user has a dedicated code that is used to separate his transmission from transmissions from other users. This dedicated code is commonly referred to as a spreading code, because it spreads the information across the band. The code is also commonly referred to as a Pseudo Noise or PN code. In a CDMA transmission, each bit of transmitted data is replaced by a particular spreading code associated with a user. If the data to be transmitted is a binary “1”, then the particular spreading code is transmitted. If the data to be transmitted is a binary “0”, then the spreading code is replaced by the inverse of the spreading code.
To decode the transmission at the receiver it is necessary to “despread” the code. The dispreading process takes the incoming signal and multiplies it by the spreading code and sums the results. This process is commonly known as correlation, and it is commonly said that the signal is correlated with the PN code. The result of the dispreading process is that the original data may be separated from all other transmissions, and the original signal is recovered. A property of PN codes used in CDMA systems is that the presence of one spread spectrum code does not change the result of the decoding of another code. The property that one code does not interfere with the presence of another code is often referred to as orthogonality, and codes that posses

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fast acquisition of GPS signal does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fast acquisition of GPS signal, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fast acquisition of GPS signal will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3310267

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.