Family of discretely sized silicon nanoparticles and method...

Chemistry of inorganic compounds – Silicon or compound thereof – Elemental silicon

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

07001578

ABSTRACT:
A family of discrete and uniformly sized silicon nanoparticles, including 1 (blue emitting), 1.67 (green emitting), 2.15 (yellow emitting), 2.9 (red emitting) and 3.7 nm (infrared emitting) nanoparticles, and a method that produces the family. The nanoparticles produced by the method of the invention are highly uniform in size. A very small percentage of significantly larger particles are produced, and such larger particles are easily filtered out. The method for producing the silicon nanoparticles of the invention utilizes a gradual advancing electrochemical etch of bulk silicon, e.g., a silicon wafer. The etch is conducted with use of an appropriate intermediate or low etch current density. An optimal current density for producing the family is ˜10 milli Ampere per square centimeter (10 mA/cm2). Higher current density favors 1 nm particles, and lower the larger particles. Blue (1 nm) particles, if any appreciable quantity exist depending on the selected current density, may be removed by, for example, shaking or ultrasound. After the etch, the pulverized wafer is immersed in dilute HF for a short time, while the particles are still connected to the wafer to weaken the linkages between the larger particles. This may be followed by separation of nanoparticles from the surface of the silicon. Once separated, various methods may be employed to form plural nanoparticles into crystals, films and other desirable forms. The nanoparticles may also be coated or doped. The invention produces the family of a discrete set of sized particles and not a continuous size distribution. Particles may be isolated from the family, i.e., it is possible to produce any one of the sizes of particles from the family after the basic method steps have been executed to produce the family of particles.

REFERENCES:
patent: 3597624 (1971-08-01), Weiner
patent: 4931692 (1990-06-01), Takagi et al.
patent: 5308804 (1994-05-01), Lee
patent: 5527386 (1996-06-01), Statz
patent: 5537000 (1996-07-01), Alivisatos et al.
patent: 5561679 (1996-10-01), Mannik et al.
patent: 5690807 (1997-11-01), Clark, Jr. et al.
patent: 5695617 (1997-12-01), Graiver et al.
patent: 5703896 (1997-12-01), Pankove et al.
patent: 5714766 (1998-02-01), Chen et al.
patent: 5747180 (1998-05-01), Miller et al.
patent: 5770022 (1998-06-01), Chang et al.
patent: 5881200 (1999-03-01), Burt
patent: 5891548 (1999-04-01), Graiver et al.
patent: 5906670 (1999-05-01), Dobson et al.
patent: 5932889 (1999-08-01), Matsumura et al.
patent: 5942748 (1999-08-01), Russell et al.
patent: 6060743 (2000-05-01), Sugiyama et al.
patent: 6326311 (2001-12-01), Ueda et al.
patent: 6407424 (2002-06-01), Forbes
patent: 6410934 (2002-06-01), Nayfeh et al.
patent: 6456423 (2002-09-01), Nayfeh et al.
patent: 6585947 (2003-07-01), Nayfeh et al.
patent: 6597496 (2003-07-01), Nayfeh et al.
patent: 6743406 (2004-06-01), Nayfeh et al.
patent: 0 354 141 (1990-02-01), None
G. Allan, C. Delerue, M. Lannoo, “Nature of Luminescent Surface States of Semiconductor Nanocrystallites”, Physical Rev. Lett., vol. 76, No. 16, Apr. 15, 1996, pp. 2961-2964.
D. Andsager, J. Hilliard, J.M. Hetrick, L.H. AbuHassan, M. Plisch, M.H. Nayfeh, “Quenching of Porous Silicon Photoluminescence by Deposition of Metal Adsorbates”, J. Appl. Phys., vol. 74, No. 74, No. 7, Oct. 1, 1993, pp. 4783-4785.
D. Andsager, J. Hilliard, M.H. Nayfeh, “Behavior of Porous Silicon Emission Spectra During Quenching by Immersion in Metal Ion Solutions”, Appl. Phys. Lett., vol. 64, No. 9, Feb. 28, 1994, pp. 1141-1143.
D. Andsager, J.M. Hetrick, J. Hilliard, M.H. Nayfeh, “Diffusion of Copper in Porous Silicon”, J. Appl. Phys., vol. 77, No. 9, May 1, 1995, pp. 1-4.
Anton Fojtik, Armin Henglein, “Luminescent colloidal silicon particles”, Chemical Physics Letters 221, Apr. 29, 1994, pp. 363-367.
Gennadiy Belomoin, Joel Therrien, and Munir Nayfeh, “Oxide and hydrogen capped ultrasmall blue luminescent Si nanoparticles”, Applied Physics Letters, vol. 77, No. 6, Aug. 7, 2000, pp. 779-780.
M.L. Brongersma, K.S. Min, E. Boer, T.Tambo, A. Polman, and H.A. Atwater, “Tailoring the Optical Properties of Si Nanocrystals in SiO2Materials Issues and Nanocrystal Laser Perspectives”, Mat. Res. Soc. Symp. Proc., vol. 486, 1998 Materials Research Society, pp. 213-217.
L.E. Brus, P.F. Szajowski, W.L. Wilson, T.D. Harris, S. Schuppler, and P.H. Citrin, “Electronic Spectroscopy and Photophysics of Si Nanocrystals: Relationship to Bulk c-Si and Porous Si”, J. Am. Chem. Soc., 1995, vol. 117, pp. 2915-2922.
L.T. Canham, “Silicon Quantum Wire Array Fabrication by Electrochemical and Chemical Dissolution of Wafers”, Appl. Phys. Lett., vol. 57, No. 10, Sep. 3, 1990, pp. 1046-1048.
R.P. Chin, Y.R. Shen, V. Petrova-Koch, “Photoluminescence from Porous Silicon by Infrared Multiphoton Excitation” Science, vol. 270, Nov. 3, 1995, pp. 776-778.
G.M. Credo, M.D. Mason, and S.K. Buratto, “External quantum efficiency of single porous silicon nanoparticles”, Applied Physics Letters, vol. 74, No. 14, Apr. 5, 1999, pp. 1978-1980.
A.G. Cullis, L.T. Canham, P.D.J. Calcott, “The Structural and Luminescence Properties of Porous Silicon”, J. Appl. Phys., vol. 82, No. 3, Aug. 1, 1997, pp. 909-965.
D.J. DiMaria, J.R. Kirtley, E.J. Pakulis, D.W. Dong, T.S. Kuan, F.L. Pesavento, T.N. Theis, J.A. Cutro, and S.D. Brorson, “Electroluminescence studies in silicon dioxide films containing tiny silicon islands”, J. Appl. Phys., vol. 56, No. 2, Jul. 15, 1984, pp. 401-416.
J. Erland, P. Yu, S.I. Bozhevolnyi, J.M. Hvam, N.N. Ledentsov, “Second harmonic spectroscopy of semiconductor nanostructures”, Quantum Electronics and Laser Science Conference Technical Digest, May 1999, pp. 233-234.
F. Koch, “Models and Mechanisms for the Luminescence of Porous Si”, Mater. Res. Soc. Symp. Proc., vol. 298, 1993, pp. 319-329.
J. Gole, D. Dixon, “Evidence for Oxide Formation from the Single and Multiphoton Excitation of a Porous Silicon Surface or Silicon ‘Nanoparticles’”, J. Appl. Phys., vol. 83, No. 11, Jun. 1, 1998, pp. 5985-5991.
E. Hanamura, “Very Large Optical Nonlinearity of Semiconductor Microcrystallites”, Physical Rev. B, vol. 37, No. 3, Jan. 15, 1988, pp. 1273-1279.
J.L. Heinrich, C.L. Curtis, G.M. Credo, K.L. Kavanagh, M.J. Sailor, “Luminescent Colloidal Silicon Suspensions from Porous Silicon”, Science, vol. 255, Jan. 3, 1992, pp. 66-68.
J. Hilliard, D. Andsager, L. Abu Hassan, H.M. Nayfeh, M.H. Nayfeh, “Infrared Spectroscopy and Secondary Ion Mass Spectrometry of Luminescent, Nonluminescent and Metal Quenched Porous Silicon”, J. Appl. Phys., vol. 76, No. 4, Aug. 15, 1994, pp. 2423-2427.
J.E. Hilliard, H.M. Nayfeh, M.H. Nayfeh, “Re-Establishment of Photoluminescence in Cu Quenched Porous Silicon by Acid Treatment”, J. App. Phys., vol. 77, No. 8, Apr. 15, 1995, pp. 4130-4132.
Kouichi Murakami and Tetsuya Makimura, Silicon nanoparticles with visible light emission -Laser ablation-, Oyo Buturi, vol. 67, No. 7, pp. 817-821, Jul. 1998 (with verified translation).
K.A. Littau, P.J. Szajowski, A.J. Muller, A.R. Kortan, and L.E. Brus, “A Luminescent Silicon Nanocrystal Colloid via a High-Temperature Aerosol Reaction”, The Journal of Physical Chemistry, vol. 97, No. 6, 1993, pp. 1224-1230.
L.A. Chiu, A.A. Seraphin, and K.D. Kolenbrander, “Gas Phase Synthesis and Processing of Silicon Nanocrystallites: Characterization by Photoluminescence Emission Spectroscopy”, Journal of Electronic Materials, vol. 23, No. 3, 1994, pp. 347-354.
Tetsuya Makimura, Yasuhiko Kunii and Kouichi Murakami, “Light Emission from Nanometer-Sized Silicon Particles Fabricated by the Laser Ablation Method”, Jpn. J. Appl. Phys., vol. 35, (1996), pp. 4780-4784.
M. Nayfeh, “Fabrication of Nanometer Scale Structures”, SPIE Institutes, vol. IS 10, (1993), pp. 200-217.
M.H. Nayfe

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Family of discretely sized silicon nanoparticles and method... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Family of discretely sized silicon nanoparticles and method..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Family of discretely sized silicon nanoparticles and method... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3673906

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.