Chemistry of inorganic compounds – Silicon or compound thereof – Elemental silicon
Reexamination Certificate
2001-11-21
2004-06-01
Silverman, Stanley S. (Department: 1754)
Chemistry of inorganic compounds
Silicon or compound thereof
Elemental silicon
C205S656000, C205S674000, C205S686000
Reexamination Certificate
active
06743406
ABSTRACT:
FIELD OF THE INVENTION
The present invention generally concerns elemental silicon nanoparticles.
BACKGROUND ART
Silicon nanoparticles are an area of intense study. Nanoparticles that are below about 10 nm are of interest because the nanoparticles, when reduced to particular sizes not found in naturally occurring elemental silicon, exhibit properties unlike bulk silicon. Various techniques exist for producing silicon nanoparticles of random dimensions, and those processes sometimes produce silicon nanoparticles below 10 nm.
U.S. patent application Ser. No. 09/426,389, entitled SILICON NANOPARTICLE AND METHOD FOR PRODUCING THE SAME, incorporated by reference herein, discloses a method for producing quantities of uniformly sized 1 nm silicon nanoparticles. This ability to produce uniformly sized particles in quantity is an important advance in the state of the art.
SUMMARY OF INVENTION
The invention is a family of discretely and uniformly sized silicon nanoparticles, including 1 (blue emitting), 1.67 (green emitting), 2.15 (yellow emitting), 2.9 (red emitting) and 3.7 nm (infrared emitting) nanoparticles, and a method that produces the family. The nanoparticles produced by the method of the invention are highly uniform in size. A very small percentage of significantly larger particles are produced, and such larger particles are easily filtered out.
The method for producing the silicon nanoparticles of the invention utilizes a gradual advancing electrochemical etch of bulk silicon, e.g., a silicon wafer. The etch is conducted with use of an appropriate intermediate or low etch current density. An optimal current density for producing the family is ~10 milli Ampere per square centimeter (10 mA/cm
2
). Higher current density favors 1 nm particles, and lower the larger particles. Blue (1 nm) particles, if any appreciable quantity exist depending on the selected current density, may be removed by, for example, shaking or ultrasound. After the etch, the pulverized wafer is immersed in dilute HF for a short time, while the particles are still connected to the wafer, to weaken the linkages between the larger particles. This may be followed by separation of nanoparticles from the surface of the silicon. Once separated, various methods may be employed to form plural nanoparticles into crystals, films and other desirable forms. The nanoparticles may also be coated or doped. The invention produces the family of a discrete set of sized particles and not a continuous size distribution.
Particles may be isolated from the family, i.e., it is possible to produce any one of the sizes of particles from the family after the basic method steps have been executed to produce the family of particles. The blue particles are preferably obtained prior to the HF immersion. Larger particles are obtained by additional procedures subsequent to the HF immersion. An isolation step is conducted to select a desired particle size from the family of particles after the above steps to produce the family of particle are conducted. According to a preferred embodiment, isolation is accomplished using steps of centrifuging, course filtering, and acid treatment. This protocol is effective in isolating particles of a given size with a high degree of uniformity. Chromatography may be used to further isolate particles of a given size with a high degree of uniformity since the sizes are discrete and well separated.
REFERENCES:
patent: 3597624 (1971-08-01), Weiner
patent: 4931692 (1990-06-01), Takagi et al.
patent: 5308804 (1994-05-01), Lee
patent: 5527386 (1996-06-01), Statz
patent: 5537000 (1996-07-01), Alivisatos et al.
patent: 5561679 (1996-10-01), Mannik et al.
patent: 5690807 (1997-11-01), Clark, Jr. et al.
patent: 5695617 (1997-12-01), Graiver et al.
patent: 5703896 (1997-12-01), Pankove et al.
patent: 5714766 (1998-02-01), Chen et al.
patent: 5747180 (1998-05-01), Miller et al.
patent: 5770022 (1998-06-01), Chang et al.
patent: 5881200 (1999-03-01), Burt
patent: 5891548 (1999-04-01), Graiver et al.
patent: 5906670 (1999-05-01), Dobson et al.
patent: 5932889 (1999-08-01), Matsumura et al.
patent: 5942748 (1999-08-01), Russell et al.
patent: 6060743 (2000-05-01), Sugiyama et al.
patent: 6326311 (2001-12-01), Ueda et al.
patent: 6407424 (2002-06-01), Forbes
patent: 0354 141 (1990-02-01), None
Gennadiy Belomoin, Joel Therrien, and Munir Nayfeh, “Oxide and hydrogen capped ultrasmall blue luminescent Si nanoparticles”, Applied Physics Letters, vol. 77, No. 6, Aug. 7, 2000, pp. 779-780.
M.L. Brongersma, K.S. Min, E. Boer, T.Tambo, A. Polman, and H.A. Atwater, “Tailoring the Optical Properties of Si Nanocrystals in SiO2Materials Issues and Nanocrystal Laser Perspectives”, Mat. Res. Soc. Symp. Proc., vol. 486, 1998 Materials Research Society, pp. 213-217.
L.E. Brus, P.F. Szajowski, W.L. Wilson, T.D. Harris, S. Schuppler, and P.H. Citrin, “Electrical Spectroscopy and Photophysics of Si Nanocrystals: Relationship to Bulk c-Si and Porous Si”, J. Am. Chem. Soc., 1995, vol. 117, pp. 2915-2922.
Tetsuya Makimura, Yasuhiko Kunii and Kouichi Murakami, “Light Emission from Nanometer-Sized Silicon Particles Fabricated by the Laser Ablation Method”, Jpn. J. Appl. Phys., vol. 35, (1996), pp. 4780-4784.
M. Nayfeh, O. Akcakir, J. Therrien, Z. Yamani, N. Barry, W. Yu, and E. Gratton, “Highly nonlinear photoluminescence threshold in porous silicon”, Applied Physics Letters, vol. 75, No. 26, Dec. 27, 1999, pp. 4112-4113.
Sandip Tiwari, Farhan Rana, Hussein Hanafi, Allan Hartstein, Emmanuel F. Crabbé, and Kevin Chan, “A silicon nanocrystals based memory”, Appl. Phys. Lett., vol. 68, No. 10, Mar. 4, 1996, pp. 1377-1379.
G.M. Credo, M.D. Mason, and S.K. Buratto, “External quantum efficiency of single porous silicon nanoparticles”, Applied Physics Letters, vol. 74, No. 14, Apr. 5, 1999, pp. 1978-1980.
J. Erland, P. Yu, S.I. Bozhevolnyi, J.M. Hvam, N.N. Ledentsov, “Second harmonic spectroscopy of semiconductor nanostructures”, Quantum Electronics and Laser Science Conference Technical Digest, May 1999, pp. 233-234.
L. Pavesl, L. Dal Negro, C. Mazzoleni, G. Franzo and F. Priolo, “Optical gain in silicon nanocrystals”, Nature, vol. 408, Nov. 23, 2000, pp. 440-443.
D.J. DiMaria, J.R. Kirtley, E.J. Pakulis, D.W. Dong, T.S. Kuan, F.L. Pesavento, T.N. Theis, J.A. Cutro, and S.D. Brorson, “Electroluminescence studies in silicon dioxide films containing tiny silicon islands”, J. Appl. Phys., vol. 56, No. 2, Jul. 15, 1984, pp. 401-416.
S. Juen, K. Überbacher, J. Baldauf, K.F. Lamprecht, R. Tessadri, R. Lackner, R.A. Höpfel, “Technology and Photoluminescence of GaAs Micro- and Nanocrystallites”, Superlattices and Microstructures, vol. 11, No. 2, 1992, pp. 181-184.
K.A. Littau, P.J. Szajowski, A.J. Muller, A.R. Kortan, and L.E. Brus, “A Luminescent Silicon Nanocrystal Colloid via a High-Temperature Aerosol Reaction”, The Journal of Physical Chemistry, vol. 97, No. 6, 1993, pp. 1224-1230.
Anton Fojtik, Arnim Henglein, “Luminescent colloidal silicon particles”, Chemical Physics Letters 221, Apr. 29, 1994, pp. 363-367.
L.A. Chiu, A.A. Seraphin, and K.D. Kolenbrander, “Gas Phase Synthesis and Processing of Silicon Nanocrystallites: Characterization by Photoluminescence Emission Spectroscopy”, Journal of Electronic Materials, vol. 23, No. 3, 1994, pp. 347-354.
Xinwei Zhao, Olaf Schoenfeld, Jun-ichi Kusano, Yoshinobu Aoyagi and Takuo Sugano, “Observation of Direct Transitions in Silicon Nanocrystallites”,Jpn. J. Appl. Phys., vol. 33, Jul. 1, 1994, Pt. 2, No. 7A, pp. L899-L901.
Shoutian Li, I.N. Germanenko, M.S. El Shall, “Semiconductor nanoparticles in contact: quenching of the photoluminescence from silicon nanocrystals by WO3 nanoparticles suspended in solution”, Journal of Physical Chemistry B, vol. 102, No. 38, pp. 7319-7322, Sep. 17, 1998 (Abstract).
S. T. Yau, D. Saltz, M. H. Nayfeh, “Laser-Assisted Deposition of Nanometer Structures Using a Scanning Tunneling Microscope”,Appl. Phys. Lett., vol. 57, No. 27, Dec. 31, 1990, pp. 2913-2915.
S.T. Yau, X. Zheng, M.H. Nayfeh, “Nanolithography of Chemically Prepared Si With a Scanning Tunneling Microscope”,Appl. Phy
Belomoin Gennadey
Chaieb Sahraoui
Nayfeh Munir H.
Rao Satish
Therrien Joel
Greer Burns & Crain Ltd.
Medina Maribel
Silverman Stanley S.
The Board of Trustees of the University of Illinois
LandOfFree
Family of discretely sized silicon nanoparticles and method... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Family of discretely sized silicon nanoparticles and method..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Family of discretely sized silicon nanoparticles and method... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3338689