Facilities for detailed software performance analysis in a...

Data processing: software development – installation – and managem – Software program development tool – Translation of code

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C717S152000, C717S152000, C709S241000, C709S241000

Reexamination Certificate

active

06256775

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates in general to an improved method for and apparatus of a computer data processing system, and in particular, to an improved high performance processor and method embodied in the combination of hardware and software of the processor by using threadswitch techniques to monitor low-level events throughout a chip without external monitoring devices.
BACKGROUND OF THE INVENTION
The fundamental structure of a modem computer includes peripheral devices to communicate information to and from the outside world; such peripheral devices may be keyboards, monitors, tape drives, communication lines coupled to a network, etc. Also included in the basic structure of the computer is the hardware necessary to receive, process, and deliver this information to and from the outside world, including busses, memory units, input/output (I/O) controllers, storage devices, and at least one central processing unit (CPU), etc. By analogy, the CPU is the brain of the system since it executes the instructions which comprise a computer program and directs the operation of the other system components.
From the standpoint of the computer's hardware, most systems operate in fundamentally the same manner. Processors actually perform very simple operations quickly, such as arithmetic, logical comparisons, and movement of data from one location to another. Programs which direct a computer to perform massive numbers of these simple operations may offer the illusion that the computer is doing something sophisticated. What is perceived by the user as a new or improved capability of a computer system, however, may actually be the machine performing the same simple operations, but much faster. Therefore continuing improvements to computer systems require that these systems be made ever faster.
One measurement of the overall speed of a computer system, also called the throughput, is measured as the number of operations performed per unit of time. Conceptually, the simplest of all possible improvements to system speed is to increase the clock speeds of the various components, particularly the clock speed of the processor. For example, if everything runs twice as fast but otherwise works in exactly the same manner, the system should generally perform a given task in half the time. Computer processors which were constructed from discrete components years ago performed significantly faster by shrinking the size and reducing the number of components; eventually the entire processor was packaged as an integrated circuit on a single chip. The reduced size made it possible to increase the clock speed of the processor, and accordingly increase system speed.
Despite the enormous improvement in speed obtained from integrated circuitry, the demand for ever faster computer systems still exists. Hardware designers have been able to obtain still further improvements in speed by greater integration, by further reducing the size of the circuits, and by other techniques. However, physical size reductions cannot continue indefinitely and there are limits to continually increasing processor clock speeds. Attention has therefore been directed to other approaches for further improvements in overall speed of the computer system.
Without changing the clock speed, it is still possible to improve system speed by using multiple processors. The modest cost of individual processors packaged on integrated circuit chips has made this practical. The use of slave processors considerably improves system speed by off-loading work from the CPU to the slave processor. For instance, slave processors routinely execute repetitive and single special purpose programs, such as input/output device communications and control. It is also possible for multiple CPUs to be placed in a single computer system, typically a host-based system which services multiple users simultaneously. Each of the different CPUs can separately execute a different task on behalf of a different user, thus increasing the overall speed of the system to execute multiple tasks simultaneously. It is much more difficult, however, to improve the speed at which a single task, such as an application program, executes. Coordinating the execution and delivery of results of various functions among multiple CPUs is a challenging task. For slave I/O processors this is not as difficult because the functions are pre-defined and limited, but for multiple CPUs executing general purpose application programs it is much more difficult to coordinate functions because, in part, system designers do not know the details of the programs in advance. Most application programs follow a single path or flow of steps performed by the processor. While it is sometimes possible to break up this single path into multiple parallel paths, a universal application for doing so is still being researched. Generally, breaking a lengthy task into smaller tasks for parallel processing by multiple processors is done by a software engineer writing code on a case-by-case basis. This ad hoc approach is especially problematic for executing commercial programs which are not necessarily repetitive or predictable.
Thus, while multiple processors improve overall system performance, there are still many reasons to improve the speed of the individual CPU. If the CPU clock speed is given, it is possible to further increase the speed of the CPU, i.e., the number of operations executed per second, by increasing the average number of operations executed per clock cycle. A common architecture for high performance, single-chip microprocessors is the reduced instruction set computer (RISC) architecture characterized by a small simplified set of frequently used instructions for rapid execution, those simple operations performed quickly mentioned earlier. As semiconductor technology has advanced, the goal of RISC architecture has been to develop processors capable of executing one or more instructions on each clock cycle of the machine.
Another approach to increase the average number of operations executed per clock cycle is to modify the hardware within the CPU. This throughput measure, clock cycles per instruction, is commonly used to characterize architectures for high performance processors. Instruction pipelining and cache memories are computer architectural features that have made this achievement possible. Pipeline instruction execution allows subsequent instructions to begin execution before previously issued instructions have finished. Cache memories store frequently used and other data nearer the processor and allow instruction execution to continue, in most cases, without waiting the full access time of a main memory. Some improvement has also been demonstrated with multiple execution units with look ahead hardware for finding instructions to execute in parallel.
The performance of a conventional RISC processor can be further increased in the superscalar computer and the Very Long Instruction Word (VLIW) computer, both of which execute more than one instruction in parallel per processor cycle. In these architectures, multiple functional or execution units are provided to run multiple pipelines in parallel. In a superscalar architecture, instructions may be completed in-order and out-of-order. In-order completion means no instruction can complete before all instructions dispatched ahead of it have been completed. Out-of-order completion means that an instruction is allowed to complete before all instructions ahead of it have been completed, as long as a predefined rules are satisfied.
For both in-order and out-of-order execution in superscalar systems, pipelines will stall under certain circumstances. An instruction that is dependent upon the results of a previously dispatched instruction that has not yet completed may cause the pipeline to stall. For instance, instructions dependent on a load/store instruction in which the necessary data is not in the cache, i.e., a cache miss, cannot be executed until the data becomes available in the cache. Maintaining the requisite data in the cac

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Facilities for detailed software performance analysis in a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Facilities for detailed software performance analysis in a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Facilities for detailed software performance analysis in a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2557304

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.