Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Implantable prosthesis – Bone
Reexamination Certificate
2000-10-20
2003-08-26
Isabella, David J. (Department: 3738)
Prosthesis (i.e., artificial body members), parts thereof, or ai
Implantable prosthesis
Bone
C606S064000
Reexamination Certificate
active
06610091
ABSTRACT:
FIELD OF THE INVENTION
The present invention generally relates to devices and surgical methods for the treatment of various types of spinal pathologies. More specifically, the present invention is directed to several different types of spinal joint replacement prostheses, surgical procedures for performing spinal joint replacements, and surgical instruments which may be used to perform the surgical procedures.
BACKGROUND OF THE INVENTION
Back pain is a common human ailment. In fact, approximately 50% of persons who are over 60 years old suffer from lower back pain. Although many incidences of back pain are due to sprains or muscle strains which tend to be self-limited, some back pain is the result of more chronic fibromuscular, osteoarthritic, or ankylosing spondolytic processes of the lumbosacral area. Particularly in the population of over 50 year olds, and most commonly in women, degenerative spine diseases such as degenerative spondylolisthesis and spinal stenosis occurs in a high percentage of the population. Iida, et al, 1989.
Degenerative changes of the adult spine have traditionally been determined to be the result of the interrelationship of the three joint complex; the disk and the two facet joints. Degenerative changes in the disc lead to arthritic changes in the facet joint and vice versa. See Farfan and Sullivan, 1967; see also Farfan, 1969; see also Farfan, 1980.
One cadaver study of 19 cadavers with degenerative spondylolisthesis showed that facet degeneration was more advanced than disc degeneration in all but two cases. Farfan. In mild spondylolisthetic cases, the slip appeared to be primarily the result of predominantly unilateral facet subluxation. Other studies into degenerative changes of the spine have revealed extensive contribution of facet joint degeneration to degenerative spinal pathologies such as degenerative spondylolisthesis, central and lateral stenosis, degenerative scoliosis, and kypho-scoliosis, at all levels of the lumbar spine. See Kirkaldy-Willis et al, 1978; see also Rosenberg, 1975.
It has been determined that facet joint degeneration particularly contributes to degenerative spinal pathologies in levels of the lumbar spine with sagittally oriented facet joints, i.e. the L4-L5 level.
When intractable pain or other neurologic involvement results from adult degenerative spine diseases, such as the ones described above, surgical procedures may become necessary. Traditionally, the surgical management of disease such as spinal stenosis consisted of decompressive laminectomy alone. Herkowitz, et al, The Diagnosis and Management of Degenerative Lumber Spondylolisthesis, 1998. Wide decompressive laminectomies remove the entire lamina, and the marginal osteophytes around the facet joint. Because a lot of degenerative spine disease has been demonstrated to be caused by facet joint degeneration or disease, this procedure removes unnecessary bone from the lamina and insufficient bone from the facet joint.
Furthermore, although patients with one or two levels of spinal stenosis tend to do reasonably well with just a one to two level wide decompressive laminectomy, patients whose spinal stenosis is associated with degenerative spondylolisthesis have not seen good results. Lombardi, 1985. Some studies reported a 65% increase in degree of spondylolisthesis in patients treated with wide decompressive laminectomy. See Johnson et al; see also White and Wiltse. The increase in spinal slippage especially increased in patients treated with three or more levels of decompression, particularly in patients with radical laminectomies where all of the facet joints were removed.
To reduce the occurrence of increased spondylolisthesis resulting from decompressive laminectomy, surgeons have been combining laminectomies, particularly in patients with three or more levels of decompression, with multi-level arthrodesis. Although patients who undergo concomitant arthrodesis do demonstrate a significantly better outcome with less chance of further vertebral slippage after laminectomy, arthrodesis poses problems of its own. Aside from the occurrence of further spondylolisthesis in some patients, additional effects include non-unions, slow rate of fusion even with autografts, and significant morbidity at the graft donor site. Furthermore, even if the fusion is successful, joint motion is totally eliminated at the fusion site, creating additional stress on healthy segments of the spine which can lead to disc degeneration, herniation, instability spondylolysis, and facet joint arthritis in the healthy segments.
An alternative to spinal fusion has been the use of an invertebral disc prosthesis. There are at least 56 artificial disc designs which have been patented or identified as being investigated. McMillin C. R. and Steffee A. D., 20th Annual Meeting of the Society for Biomaterials (abstract) (1994). Although different designs achieve different levels of success with patients, disc replacement mainly helps patients with injured or diseased discs; disc replacement does not address spine pathologies such as spondylolisthesis and spinal stenosis caused by facet joint degeneration or disease.
SUMMARY OF THE INVENTION
There is a need in the field for prostheses and prosthetic systems to replace injured and/or diseased facet joints, which cause, or are a result of, various spinal diseases. There is also a need for surgical methods to install such prostheses. There is also a need for prostheses and prosthetic systems to replace spinal fushion procedures.
The present invention overcomes the problems and disadvantages associated with current strategies and designs in various treatments for adult spine diseases. The present inventive spinal arthroplastic systems avoid the problems of spine stiffness, increased loads on unfused levels, and predictable failure rates associated with spinal arthrodesis.
The present invention pertains to spinal prostheses designed to replace facet joints and/or part of the lamina at virtually all spinal levels including L1-L2, L2-L3, L3-L4, L4-L5, L5-S-1, T11-T12, and T12-L1. Various types of joint replacement prostheses are described for treating different types of spinal problems.
One aspect of the invention provides a facet prosthesis, which suitable for use in virtually all levels of the spine, including all lumbar levels, lower thoracic levels, and the first sacral level. The facet prosthesis may comprise, e.g., a body which attaches to a pedicle and includes a surface defining a facet.
Another aspect of the invention provides a bilateral facet arthroplasty system. The bilateral facet arthroplasty system may comprise, e.g., an inferior lamina/facet prosthesis that spans the distance from one inferior facet joint to another and replaces both inferior facet segments and any inferior section of a lamina which has been cut. The bilateral facet arthroplasty system may also comprise, e.g., facet prostheses which have replaced the superior facets to form a complete prosthetic facet joint with the inferior facet prosthesis.
Another aspect of the invention provides a hemi-lamina/facet prosthesis, which may replace parts of a lamina and inferior facet which have been removed in a hemiarthroplasty with or without wide decompressive laminectomy.
Another aspect of the invention provides surgical procedures for performing replacements of various facets and lamina in the spine, as well as surgical instruments for facilitating performance of the disclosed surgical procedures, including spinal fushion.
Another aspect of the invention allows sequential replacements of all facet joints from S1 to T11, allowing for motion on all levels.
REFERENCES:
patent: 5015255 (1991-05-01), Kuslich
patent: 5062845 (1991-11-01), Kuslich et al.
patent: 5300073 (1994-04-01), Ray et al.
patent: 5445639 (1995-08-01), Kuslich et al.
patent: 5491822 (1996-02-01), Walston et al.
patent: 5507823 (1996-04-01), Walston et al.
patent: 5571191 (1996-11-01), Fitz
patent: 5577995 (1996-11-01), Walker et al.
patent: 5603713 (1997-02-01), Aust et al.
patent: 5741261 (1998-04-01), Moskovitz et al.
p
Archus Orthopedics Inc.
Isabella David J.
Ryan Kromholz & Manion S.C.
LandOfFree
Facet arthroplasty devices and methods does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Facet arthroplasty devices and methods, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Facet arthroplasty devices and methods will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3117880