Fishing – trapping – and vermin destroying
Patent
1995-12-29
1997-03-04
Breneman, R. Bruce
Fishing, trapping, and vermin destroying
437 62, 437126, 437133, H01L 2120
Patent
active
056078765
ABSTRACT:
The present invention consists of an electroluminescent structure and method of fabrication of that structure in materials which have an indirect bandgap in their bulk form. The processing steps can all be standard VLSI methods. Quantum columns, quantum wires or quantum dots may be formed, for example in an array, by masking, reactive ion etching and oxidation. When the semiconductor core is sufficiently thin, quantum mechanical confinement effects raise the energy and the radiative recombination efficiency of injected carriers. Tuning the core diameters allows selection of individual or multiple wavelength emission bands.
REFERENCES:
patent: 4211586 (1980-07-01), Fang
patent: 4802187 (1989-01-01), Bouley
patent: 4862231 (1989-08-01), Abeud
patent: 4875086 (1989-10-01), Mahli et al.
patent: 4910165 (1990-03-01), Lee et al.
patent: 4999682 (1991-03-01), Xu
patent: 5033053 (1991-07-01), Shimizu et al.
patent: 5045894 (1991-09-01), Wigita et al.
patent: 5054030 (1991-10-01), Sakaki
Reed et al, Physical Review Letters vol. 60 No. 6 8 Feb. 1988, "Observation . . . Nanostructure" pp. 535-537.
Paasche et al IEEE Trans. on Elect. Devices vol. 36 No. 12 Dec. 1989 pp. 2895-2900 "Amorphous--SiC . . . Layers".
"Visible Light from Porous Si: An Open Door to Silicon-Based Optoelectronics?" Sponsored by Symposium B: Silicon Molecular Beam Epitaxy. 1991 MRS Spring Meeting Anaheim, California, Thursday, 2 May 1991.
Ein Neuer Stern Am Halbleiterhimmel. Elecktronik. vol. 40, No. 19, 17 Sep. 1991, Munchen De. p. 18.
Venkatasubramanian, R.; Malta, D. P.; Timmons, M. L.; Hutchby, J. A. Visible Light Emission From Quantized Planar Ge Structures. Applied Physics Letters. vol. 59, No. 13, 23 Sep. 1991, New York, U.S.A., pp. 1603-1605.
Halimaoui, A.; Oules, C.; Bomchil, G.; Bsiesy, A.,; Gaspard, F.; Herino, R.; Ligeon, M.; Muller, F. Electroluminescence in the Visible Range During Anodic Oxidation of Porous Silicon Films. Applied Physics Letters. vol. 59, No. 3, 15 Jul. 1991, New York, U.S.A. pp. 304-306.
Canham, L. T. Silicon Quantum Wire Array Fabrication by Electrochemical and Chemical Dissolution of Wafers. Applied Physics Letters. vol. 57, No. 10, 3 Sep. 1990, New York, U.S.A. pp. 1046-1048.
U. Gnutzmann et al., Theory of Direct Optical Transitions in an Optical Indirect Semiconductor with a Superlattice Structure, Appl. Phys., vol. 3, p. 9 (1974).
M. Hybertsen et al., Theory of Optical Transitions in S/Ge(001) Strained-Layer Superlattices, Phys. Rev. B, vol. 36, No. 18, p. 9683 (1987).
D. G. Thomas et al., Isoelectronic Traps Due to Nitrogen in Gallium Phosphide, Phys. Rev., vol. 150, No. 2, p. 680 (1966).
H. Ennen et al., 1.54 .mu.m Electroluminescence of Erbium-Doped Silicon Grown by Molecular Beam Epitaxy, Appl. Phys. Lett., vol. 46, No. 4, p. 381 (1985).
Akiyama et al., Growth of GaAs on Si and its Applications to FETs and LEDs, Mat. Res. Soc. Symp. Proc. 67, p. 53 (1986).
Yablonovich et al., Van der Waals Bonding of GaAs Epitaxial Liftoff Films Onto Arbitrary Substrates, Appl. Phys. Lett., vol. 56, No. 24, p. 2419 (1990).
Holonyak et al., Quantum-Well Heterostructure Lasers, IEEE J. Quant. Elect., vol. QE-16, No. 2, p. 170, (1980).
D. J. DiMaria et al., Electroluminescence Studies in Silicon Dioxide Films Containing Tiny Silicon Islands, J. Appl. Phys. 56, No. 2, p. 401 (1984).
S. Furukawa et al., Three Dimensional Quantum Well Effects in Ultrafine Silicon Particles, Japanese J. Appl. Phys., vol. 27, No. 11, p. L2207 (1988).
M. I. J. Beale et al., Microstructure and Formation Mechanism of Porous Silicon, Appl. Phys. Lett., vol. 46, No. 1, p. 86 (1985).
L. T. Canham, Silicon Quantum Wire Array Fabricated by Electrochemical and Chemical Dissolution of Wafers, Appl. Phys. Lett. 57, No. 10, p. 1046 (1990).
D. B. Kao et al., Two-Dimensional Thermal Oxidation of Silicon--I. Experiments, IEEE Trans. on Electron Dev., vol. ED-34, No. 5, p. 1008 (1987).
R. Okada et al., Oxidation Property of Silicon Small Particles, Appl. Phys. Lett. 58, No. 15, p. 1662 (1991).
D. Liu et al., Fabrication of Wedge-Shaped Silicon Field Emitters With nm-Scale Radii, Appl. Phys. Lett. 58, No. 10, p. 1042 (1991).
H. W. Deckman, Applications of Surface Textures Produced With Natural Lithography, J. of Vacuum Science and Tech. B, vol. 1, No. 4, p. 1109 (1983).
A. Scherer et al., Fabrication of Microlasers and Microresonator Optical Switches, Appl. Phys. Lett., vol. 55, No. 26, p. 2724 (1989).
M. B. Stern et al., Fabrication of 20-nm Structures in GaAs, Appl. Phys. Lett., vol. 45, No. 4, p. 410, (1984).
Biegelsen David K.
Johnson Noble M.
Sheridon Nicholas K.
Breneman R. Bruce
Rao Ramamohan
Xerox Corporation
LandOfFree
Fabrication of quantum confinement semiconductor light-emitting does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fabrication of quantum confinement semiconductor light-emitting , we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fabrication of quantum confinement semiconductor light-emitting will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2145740