Electric lamp or space discharge component or device manufacturi – Process – With assembly or disassembly
Reexamination Certificate
2000-05-08
2002-06-18
Ramsey, Kenneth J. (Department: 2879)
Electric lamp or space discharge component or device manufacturi
Process
With assembly or disassembly
C445S025000
Reexamination Certificate
active
06406346
ABSTRACT:
FIELD OF USE
This invention relates to flat-panel displays and, in particular, to the configuration of a spacer system utilized in a flat-panel display, especially one of the cathode-ray tube (“CRT”) type.
BACKGROUND ART
A flat-panel CRT display is a thin, flat display which presents an image on the display's viewing surface in response to electrons striking light-emissive material. The electrons can be generated by mechanisms such as field emission and thermionic emission. A flat-panel CRT display typically contains a faceplate (or frontplate) structure and a backplate (or baseplate) structure connected together through an annular outer wall. The resulting enclosure is held at a high vacuum. To prevent external forces such as air pressure from collapsing the display, one or more spacers are typically located between the plate structures inside the outer wall.
FIGS. 1 and 2
, taken perpendicular to each other, schematically illustrate part of a conventional flat-panel CRT display such as that disclosed in Schmid et al, U.S. Pat. No. 5,675,212. The components of this conventional display include backplate structure
20
, faceplate structure
22
, and a group of spacers
24
situated between plate structures
20
and
22
for resisting external forces exerted on the display. Backplate structure
20
contains regions
26
that selectively emit electrons. Faceplate structure
22
contains elements
28
that emit light upon being struck by electrons emitted from electron-emissive regions
26
. Each light-emissive element
28
is situated opposite a corresponding one of electron-emissive regions
26
.
Each of spacers
24
, one of which is fully labeled in
FIGS. 1 and 2
, consists of main spacer wall
30
, end electrodes
32
and
34
, a pair of face electrodes
36
, and another pair of face electrodes
38
. End electrodes
32
and
34
are situated on opposite ends of spacer wall
30
so as to contact plate structures
20
and
22
. Face electrodes
36
form a continuous U-shaped electrode with end electrode
32
. Face electrodes
38
form a continuous U-shaped electrode with end electrode
34
.
It is desirable that spacers in a flat-panel CRT display not produce electrical effects which cause electrons to strike the display's faceplate structure at locations significantly different from where the electrons would strike the faceplate structure in the absence of the spacers. The net amount that the spacers cause electrons to be deflected sideways should be close to zero. Achieving this goal is especially challenging when, as occurs in the conventional display of
FIGS. 1 and 2
, the spacing between consecutive wall-shaped spacers is more than two electron-emissive regions. If spacers
24
cause net electron deflections, the net deflections of electrons emitted from regions
26
located different distances away from the nearest spacer
24
are typically different. This can lead to image degradation such as undesired features appearing on the display's viewing surface.
Face electrodes
36
and
38
are utilized to control the electric potential field along spacers
24
in order to reduce their net effect on the trajectories of electrons moving from regions
26
to elements
28
. However, as discussed in Schmid et al, spacers
24
are typically made by a process in which large sheets of wall material having double-width strips of electrodes
36
and
38
formed on the sheets are mechanically cut along the centerlines of electrodes
36
and
38
. Due to mechanical limitations in performing the cutting operation, the width of each face electrode
36
or
38
can vary along its length.
In turn, the variation in face-electrode width causes the electrical effect that spacers
24
have on the electron trajectories to vary along the spacer length. The net electron deflection resulting from spacers
24
thus varies along their length. Even if the net electron deflection is largely zero at one location along the spacer's length, the net electron deflection at other locations along the spacer's length can cause substantial image degradation. It is desirable to avoid image degradation that arises from width variations of face electrodes that contact end electrodes.
GENERAL DISCLOSURE OF THE INVENTION
In accordance with the invention, a segmented face electrode overlies a face of a main portion of a spacer situated between a pair of plate structures of a flat-panel display. The segmented face electrode is spaced apart from both plate structures, one of which provides the display's image, and also from any spacer end electrodes contacting the plate structures. The face electrode is segmented laterally. That is, the face electrode is divided into a plurality of electrode segments spaced apart from one another as viewed generally perpendicular to either plate structure.
The flat-panel display is normally a flat-panel CRT display in which the image-producing plate structure emits light in response to electrons emitted from the other plate structure. As electrons travel from the electron-emitting plate structure to the light-emitting plate structure, the laterally separated segments of the face electrode typically cause the electrons to be deflected in such a manner as to compensate for other electron deflection caused by the spacer. By suitably choosing the location and size of the electrode segments, the net electron deflection caused by the spacer can be quite small.
The segments of the face electrode normally reach electric potentials largely determined by resistive characteristics of the spacer. Although the potential along the spacer generally increases in going from the electron-emitting plate structure to the light-emitting plate structure, the potential is largely constant along each electrode segment. The effect of this constant potential produces the compensatory electron deflection.
Division of the face electrode into multiple laterally separated segments facilitates achieving appropriate compensatory electron deflection along the entire active-region length of the spacer, the spacer's length being measured laterally, generally parallel to the plate structures. In particular, the value of electric potential that each electrode segment needs to attain in order to cause the requisite amount of compensatory electron deflection varies with distance from the plate structures in approximately the same way that the resistive characteristics of the spacer cause the segment potential to vary with distance from the plate structures. Once the desired segment potential is established for one distance from the plate structures, the distance from each segment to the plate structures can vary somewhat without significantly affecting the amount of compensatory electron deflection.
In contrast, consider what would happen if (a) a non-segmented face electrode were substituted for the present segmented face electrode and (b) the non-segmented face electrode were placed in approximately the same position over the main spacer portion as the segmented face electrode. The entire non-segmented face electrode would be at substantially a single electric potential. If the non-segmented face electrode were tilted relative to the plate structure for some reason, e.g., due to fabrication mis-alignment, one vertical slice through the non-segmented face electrode might be at largely the correct potential. However, a vertical slice anywhere else through the non-segmented face electrode would normally be at a wrong potential, leading to a wrong amount of compensatory electron deflection. Segmentation of the face electrode in the present flat-panel display provides tolerance in positioning the electrode segments to achieve the desired compensatory electron deflection across substantially all the active-region length of the spacer, thereby overcoming the lack of positioning tolerance that would occur with a non-segmented face electrode.
The amount of compensatory electron deflection caused by each segment of the present face electrode depends on the segment's width. Accordingly, the wi
Field John E.
Spindt Christopher J.
Candescent Technologies Corporation
Meetin Ronald J.
Ramsey Kenneth J.
Skjerven Morrill LLP
Williams Joseph
LandOfFree
Fabrication of flat-panel display having spacer with... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fabrication of flat-panel display having spacer with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fabrication of flat-panel display having spacer with... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2953924