Fabrication of embossed diffractive optics with reusable...

Stock material or miscellaneous articles – Structurally defined web or sheet – Including variation in thickness

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S333000, C428S409000, C428S447000

Reexamination Certificate

active

06245412

ABSTRACT:

The invention is directed to a novel method for inexpensively and reproducibly preparing diffractive optics. By chemically modifying a commercial master or submaster diffractive optic, particularly a grating, with a very thin layer of a release agent it is possible to use the master or submaster to emboss replica gratings onto a variety of substrates having a curable plastic surface, particularly waveguides, and to reuse the master or submaster multiple times for such embossing. The invention is also directed to the master or submaster containing the thin layer of release agent and to the substrates containing the diffractive optics prepared by the process.
BACKGROUND OF THE INVENTION
Planar optical waveguides are an attractive tool for use in analytical chemistry and spectroscopy. A wide variety of inorganic and organic materials have been used to fabricate thin-film waveguides, and as a result, planar guides can be engineered for specific chemical applications. As the evanescent wave is easily accessed, a number of papers have addressed the use of planar waveguides for bio/chemical sensors. Attenuation, fluorescence, and interferometric sensors have been reported, as has the use of waveguides for enhanced Raman spectroscopy.
Unlike fiber optics, planar waveguides have been slow to be widely accepted due to the difficulty of coupling light into the waveguide. In the laboratory, prism coupling is the predominant method, followed by end fire and grating coupling. Prism coupling, which operates on the principle of frustrated total internal reflectance, and endfire coupling, which uses fiber optics or a lens to introduce light directly into the polished endface of the waveguide, are highly efficient methods, as typically 80% of the laser beam is coupled into the waveguide. The use of prisms and fibers does not damage the waveguide, and the various elements (prisms, fibers, and lenses) are reusable. They are impractical for routine use, however, as both coupling methods require expensive positioning equipment. Prism coupling is sensitive to environmental fluctuations and destroys the two-dimensional geometry of the planar waveguide. Diffraction or reflection gratings for light coupling into planar waveguides are more practical than prisms or fibers for routine use. Although the coupling efficiency observed with gratings is reduced, the two-dimensional nature of the guide is conserved and gratings are generally more robust than prisms. Furthermore, the coupled power is immune to environmental fluctuations because the grating is often embedded in the waveguide.
Grating couplers are commonly fabricated using techniques based on holography. This approach involves an exposure step using a single mirror which creates an interference pattern between two spatial halves of a laser beam. The exposed photoresist acts as a mask for chemical etching of the underlying waveguide or substrate to form a periodic grating structure. This process can be time consuming, since this method involves an exposure followed by a chemical etch. Blazed gratings require additional fabrication steps. The use of an embossing technique where the surface relief pattern of a master grating is pressed in to a suitable material may provide a fast and economical method to form grating couplers for routine use.
Several investigators have published methods to emboss gratings for waveguide applications. The earliest was Wei et al. (Wei, J. S.; Tan, C. C. “Coupling to film waveguides with reusable plastic gratings”,
Appl. Op.,
1976, 15, 289.) who used a thick (>100 &mgr;m) film of a polycarbonate that was poured onto a master grating. The polycarbonate film was subsequently peeled from the master grating and “stuck” on the waveguide surface. Although this method is easy, it is not amenable to mass production. Furthermore, reduced efficiency is observed due to the use of an extremely thick polycarbonate film and poor contact between the grating and the waveguide surface.
This was followed by the work of Lukosz (Lukosz, W.; Tiefenthaler, K. “Embossing technique for fabricating integrated optical components in hard inorganic waveguiding materials”,
Opt. lett.
1983, 8, 537-539) who embossed gratings into sol-gel glasses. Although this technique uses a master grating to impress a replica into a thin film guide, it is limited to sol-gel glass type waveguides. Furthermore, subsequent work (Roncone, R. L.; Weller-Brophy, L. A.; Weisenbach, L.; Zelinski, B. J. J. “Embossing gratings in sol-gel waveguides: pre=emboss heat treatment effects”,
J. Non.Cryst. Solids
1991, 128, 111-117) showed that the grating pattern was not uniformly transferred and that blaze (grating profiles) was distorted.
Christensen and Dyer (Christensen, D.; Dyer, S.; Herron, J.; Hlady, V. “Comparison of robust coupling techniques for planar waveguide immunosensors”, Proc. SPIE, 1992, 1796, pp. 20-25) improved the embossing technique by coating the master grating with a vacuum deposited aluminum film. The grating pattern is replicated onto the waveguide surface with a UV curable epoxy. Because the aluminum film does not adhere strongly to the grating, it “releases” the master from the cured epoxy replicate. This type of grating replication technique can be applied to all waveguide types. The limitation however is that the master grating is not truly reusable, for each new grating embossed the aluminum release film must be reapplied to the master grating. Mass production, and the resulting economies of scale, are thus impossible.
SUMMARY OF THE INVENTION
An object of the invention is to provide a process for the production of diffractive grating structures onto a substrate, particularly optical waveguides. The gratings allow the in and out coupling of light into the waveguide or other substrate structure. The known methods for fabricating gratings, such as holographic exposure techniques, are time-consuming, expensive and not amenable to easy high volume production. This invention provides a process whereby gratings can be provided on substrates in an inexpensive and reusable manner such that single use sensors containing such gratings are much more economically feasible. The invention provides a master grating with a release surface which can be used for the embossing multiple gratings, for example up to several hundred, without the need for reapplication of the release layer. Further, inexpensive curable plastic materials, particularly epoxy resins, are used for forming the grating on the substrate.
Upon further study of the specification and appended claims, further objects and advantages of this invention will become apparent to those skilled in the art.
For achieving the above objects, the invention provides a method for producing a substrate with diffractive optics thereon comprising embossing into a curable plastic material contained on the substrate a diffractive optic pattern by pressing against the curable plastic material a master diffractive optic pattern which is coated with a thin layer of a fluorinated silane as a release layer, curing or otherwise hardening the plastic material and removing it from the master. Also, the invention provides a master diffractive optic comprising the master diffractive optic pattern, preferably on a substrate, which pattern is surface coated and modified with a fluorinated silane release agent. Further, the invention provides the product substrate with an embossed diffractive optic pattern contained in a cured plastic material, preferably a cured epoxy resin.
It is preferred that the master diffractive optic pattern be provided on a substrate. The combination of master diffractive optic pattern and substrate may be those commercially available or may be a submaster prepared from the master by the embossing process of the invention or some other process. The substrate of a commercial master diffractive grating is generally a glass substrate having a diffractive pattern thereon, however, the nature of the substrate is not critical and may be any of various materials including ceramic, polymer or metal m

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fabrication of embossed diffractive optics with reusable... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fabrication of embossed diffractive optics with reusable..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fabrication of embossed diffractive optics with reusable... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2533848

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.