Fabrication method for integrally connected image sensor...

Radiant energy – Photocells; circuits and apparatus – Photocell controlled circuit

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S239000, C250S216000, C257S434000, C438S022000, C438S048000, C438S116000

Reexamination Certificate

active

06512219

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to the packaging of electronic components. More particularly, the present invention relates to a method of fabricating and using an image sensor package.
BACKGROUND OF THE INVENTION
Image sensors are well known to those of skill the art. An image sensor included an active area, which was responsive to electromagnetic radiation. To avoid obstructing or distorting the electromagnetic radiation which struck the active area of the image sensor, it was important to avoid contamination, e.g., from dust, of the active area.
Image sensors were fabricated from a silicon wafer. More particularly, a plurality of image sensors were formed in a single silicon wafer. The silicon wafer was singulated, sometimes called cut-up or diced, to separate the image sensors from one another. However, during this wafer singulation, silicon shards were generated. These silicon shards had a tendency to contaminate and scratch the active areas of the image sensors. As a result, image sensors were damaged or destroyed, which undesirably decreased the yield. However, to reduce cost, it is important to have a high yield.
The singulated image sensor was then used to fabricate an image sensor assembly. In this assembly, the image sensor was located within a housing, which supported a window. Radiation passed through the window and struck the active area of the image sensor, which responded to the radiation.
Beaman et al., U.S. Pat. No. 5,821,532, which is herein incorporated by reference in its entirety, teaches an image sensor assembly. In the assembly, an image sensor was mounted to a printed circuit board. After the image sensor was mounted, a housing was mounted around the image sensor and to the print circuit board. This housing provided a hermetic like seal around the image sensor, while at the same time, supported a window above the image sensor.
As the art moves to smaller and lighter weight electronic devices, it becomes increasingly important that the size of the image sensor assembly used within these electronic devices is small. Disadvantageously, a conventional image sensor assembly required a housing to support the window and to hermetically seal the image sensor. However, this housing was relatively bulky and extended upwards from the printed circuit board a significant distance, e.g., 0.100 inches (2.54 mm) to 0.120 inches (3.05 mm) or more. As a result, the image sensor assembly was relatively large.
In addition, mounting this housing at the printed circuit board level was inherently labor intensive and added complexity to the manufacture of the image sensor assembly. In particular, the image sensor was exposed to the ambient environment up until the housing was mounted to the printed circuit board. Since the image sensor was sensitive to dust as well as other environmental factors, it was important to manufacture the image sensor assembly in a controlled environment such as a cleanroom. Otherwise, there was a risk of damaging or destroying the image sensor. Since neither of these alternatives are desirable and both are expensive, the art needs an image sensor assembly which is simple to manufacture so that the cost associated with the image sensor assembly is minimized.
In the event that moisture was trapped inside of the housing, defective operation or failure of the image sensor assembly was observed. More particularly, the moisture had a tendency to condense within the housing and on the interior surface of the window. Even if the housing later dried out, a stain was left on the window. In either event, electromagnetic radiation passing through the window was distorted or obstructed by either moisture condensation or stain, which resulted in defective operation or failure of the image sensor assembly.
For this reason, an important characteristic was the temperature at which condensation formed within the housing of image sensor assembly, i.e., the dew point of the image sensor assembly. In particular, it was important to have a low dew point to insure satisfactory performance of the image sensor assembly over a broad range of temperatures.
SUMMARY OF THE INVENTION
In accordance with the present invention, an image sensor package includes an image sensor having an active area, a window, and a window support in contact with the active area and in contact with the window. The window support entirely encloses, and thus protects, the active area of the image sensor.
During use, radiation is directed at the image sensor package. This radiation passes through the window, passes through the window support, and strikes the active area of the image sensor, which responds to the radiation. The window and the window support are transparent to the radiation.
In one embodiment, the refractive index of the window support is similar to the refractive index of the window. In this manner, the sensitivity of the image sensor package is improved compared to the prior art.
Recall that in the prior art, a housing was mounted around the image sensor and to the print circuit board. This housing supported a window above the image sensor. However, located between the window and the image sensor was air. Disadvantageously, air has a relatively low refractive index compared to the window. As those skilled in the art understand, as visible light or other electromagnetic radiation passes from a material having a high refractive index to a material having a low refractive index and vice versa, a significant percentage of the electromagnetic radiation is reflected. Since the electromagnetic radiation had to pass from air, through the window, and back through air to reach the active area of the image sensor in the prior art, a significant percentage of the electromagnetic radiation was reflected. This resulted in an overall loss of sensitivity of prior art image sensor assemblies.
In contrast, the window and the window support of the image sensor package in accordance with the present invention have a similar refractive index. Accordingly, the amount of reflected radiation is reduced compared to the prior art. This improves the sensitivity of the image sensor package compared to prior art image sensor assemblies.
Further, instead of having air between the window and the active area of the image sensor as in the prior art, the window support completely fills the region between the window and the active area. Advantageously, by eliminating the prior art cavity between the active area and the window, the possibility of moisture condensation within the cavity is also eliminated. Accordingly, the image sensor package does not have a dew point.
In contrast, prior art image sensor assemblies had a dew point, i.e., a temperature at which condensation formed within the housing, which enclosed the image sensor and supported the window. Disadvantageously, this limited the temperature range over which the image sensor assembly would satisfactorily perform. Alternatively, the image sensor assembly was fabricated in a low humidity environment to avoid trapping moisture within the housing and was hermetically sealed by the housing to keep out moisture. This added complexity, which increased the cost of the image sensor assembly. Further, in the event that the hermetic seal of the housing failed, the image sensor was damaged or destroyed.
Since the image sensor package in accordance with the present invention does not have a dew point, the image sensor package operates satisfactorily over a broader range of temperatures and, more particularly, at lower temperatures than image sensor assemblies of the prior art. Further, since the image sensor package is formed without a cavity, there is no possibility that moisture will leak into the image sensor package. Accordingly, the reliability of the image sensor package is greater than that of the prior art.
Further, the housing of a prior art image sensor assembly was typically formed of ceramic, which was relatively expensive. Advantageously, the image sensor package in accordance with present invention eliminates the need for a ho

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fabrication method for integrally connected image sensor... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fabrication method for integrally connected image sensor..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fabrication method for integrally connected image sensor... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3069360

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.