Coating processes – Measuring – testing – or indicating
Reexamination Certificate
1999-08-31
2001-07-24
Beck, Shrive (Department: 1762)
Coating processes
Measuring, testing, or indicating
C427S009000, C427S010000, C427S163200, C427S164000, C065S377000, C065S378000
Reexamination Certificate
active
06265018
ABSTRACT:
TECHNICAL FIELD
This invention relates to the fabrication of optical fiber.
BACKGROUND OF THE INVENTION
In the prior art, fabrication of a graded-refractive-index optical fiber is well known. For example, U.S. Pat. No. 5,760,139 and U.S. Pat. No. 5,783,636 disclose seven methods for fabricating a graded-refractive-index optical fiber. In such an optical fiber, a dopant is so distributed in a fluoropolymer as to have a concentration gradient in the direction from the center to the periphery. Preferably, it is an optical fiber wherein the dopant is a material having a higher refractive index than the fluoropolymer, and the dopant is so distributed as to have a concentration gradient such that the concentration of the dopant decreases in the direction from the center of the optical fiber to the periphery. Hence, a graded refractive index optical fiber is produced by arranging the dopant at the center and diffusing the dopant toward the periphery. In other cases, a graded refractive index optical fiber is formed wherein the dopant is a material having a lower refractive index than the fluoropolymer, and the dopant is so distributed as to have a concentration gradient that the concentration of the dopant decreases in the direction from the periphery of the optical fibers to the center. Hence, a graded refractive index optical fiber is produced by diffusing the dopant from the periphery toward the center.
The above-referenced patents disclose the following seven methods for fabricating graded index plastic optical fiber. A first method comprises melting the fluoropolymer, injecting the dopant or a fluoropolymer containing the dopant at the center of the melt of the fluoropolymer, and then molding the melt while or after diffusing the dopant. In this case, the dopant may be injected at the center not only so as to form only one layer but also so as to form multiple layers. The molding is carried out by melt-extrusion, which is suitable for forming a rod-like body material such as a preform of an optical fiber, or by melt-spinning, which is suitable for forming an optical fiber.
A second method comprises dip-coating the dopant or the fluoropolymer containing the dopant on a core formed from the fluoropolymer by melt spinning or drawing.
A third method comprises forming a hollow tube of the fluoropolymer by using a rotating glass tube or the like, filling in the polymer tube with a monomer phase which gives the dopant or the fluoropolymer which contains the dopant, and then polymerizing the monomer phase while rotating the polymer tube at a low speed. In the case of interfacial gel polymerization, at the polymerization step, the tube of the fluoropolymer swells up in the monomer phase and forms a gel phase, and the monomer molecules are polymerized while preferentially diffusing in the gel phase.
A fourth method wherein two kinds of monomers with different reactivities are used, one of which is a monomer which forms the fluoropolymer, and the other is a monomer which forms the dopant, are used, and the polymerization reaction is carried out so that the compositional proportion of the resulting fluoropolymer to the resulting dopant varies continuously in the direction from the periphery to the center.
A fifth method comprises hot-drawing or melt-extruding a mixture of the fluoropolymer and the dopant obtained by homogeneously mixing them or by homogeneously mixing them in a solvent and then removing the solvent by means of evaporation, into fibers, and then (or immediately after the formation of the fibers) bringing the fibers into contact with an inert gas under heating to evaporate the dopant from the surface and thereby forming a graded refractive index. Alternatively, the fibers are immersed in a solvent which does not dissolve the fluoropolymer but dissolves the dopant so as to dissolve out the dopant from the surface of the fibers so that a graded refractive index is formed.
A sixth method comprises coating a rod or a fiber of the fluoropolymer with only the dopant which has a smaller refractive index than the fluoropolymer or with a mixture of the fluoropolymer and the dopant, and then diffusing the dopant by heating to form a graded refractive index.
A seventh method comprises mixing a high-refractive-index polymer and a low-refractive-index polymer by hot-melting or in a state of a solution containing a solvent, and diffusing them in each other while (or after) multilayer-excluding in a state that each has a different mixing ratio, to eventually obtain a fiber having a graded refractive index. In this case, the high-refractive-index polymer may be the fluoropolymer, and the low-refractive-index polymer may be the dopant.
In all of the above fabrication methods, optical transmission bandwidth is determined by a post-manufacturing test step after the cladding and buffer have been added to the fabricated core of the optical fiber and all diffusion processes are completed. If the transmission bandwidth does not meet the required specifications, the optical fiber must be discarded. This represents a significant problem in the prior art method of fabricating plastic optical fiber.
SUMMARY OF THE INVENTION
A departure in the art is achieved by a method for fabricating graded index plastic optical fiber by diffusing a high molecular weight dopant within a step index plastic optical fiber after the step index plastic optical fiber has been drawn from a preform. The step index plastic optical fiber may be fabricated by extruding one material circumferentially around another material, e.g., by use of a concentric nozzle. The dopant is diffused after the drawing or extruding of the step index plastic optical fiber by heating the plastic optical fiber to a temperature that causes a high rate of diffusion state while measuring the transmission bandwidth of the plastic optical fiber. When the predetermined specified transmission bandwidth is reached, the plastic optical fiber is immediately returned to an ambient temperature. Advantageously, the plastic optical fiber is gradually heated to an equilibrium temperature that is just below the temperature required to produce the high rate of diffusion state. Once the equilibrium temperature has been achieved, additional heating is carried out to raise the temperature to that required to produce the high rate of diffusion and the transmission bandwidth is tested. The diffusion continues until the specified transmission bandwidth is reached. Also, when the plastic optical fiber is initially drawn from the preform, or is initially formed by extrusion, the resulting core and outer cladding are covered with a buffer material that will remain substantially undistorted at the temperature required for a high rate of diffusion.
In a second embodiment of the invention, the preform is initially heated for an amount of time that will allow the diffusion process to be partially completed. After the plastic optical fiber has been drawn, diffusion is completed while testing for the specified transmission bandwidth. The plastic optical fiber is returned to the ambient temperature when the specified transmission bandwidth is achieved.
Other and further aspects of the present invention will become apparent during the course of the following description and by reference to the accompanying drawing.
REFERENCES:
patent: 4620861 (1986-11-01), Berkey
patent: 5381503 (1995-01-01), Kanamori et al.
patent: 5593621 (1997-01-01), Koike et al.
patent: 5614253 (1997-03-01), Nonaka et al.
patent: 5756165 (1998-05-01), Ali et al.
patent: 5760139 (1998-06-01), Koike et al.
patent: 5783636 (1998-07-01), Koike et al.
patent: 6069718 (2000-05-01), Khaleghi
patent: 6109064 (2000-08-01), King
Blyler, Jr. Lee L.
Grimes Gary J.
Sherman Charles J.
Beck Shrive
Cleveland Michael
Lucent Technologies - Inc.
LandOfFree
Fabricating graded index plastic optical fibers does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fabricating graded index plastic optical fibers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fabricating graded index plastic optical fibers will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2521035