Cleaning compositions for solid surfaces – auxiliary compositions – Cleaning compositions or processes of preparing – Specific organic component
Reexamination Certificate
2000-05-11
2004-04-27
Hardee, John (Department: 1751)
Cleaning compositions for solid surfaces, auxiliary compositions
Cleaning compositions or processes of preparing
Specific organic component
C510S516000
Reexamination Certificate
active
06727220
ABSTRACT:
TECHNICAL FIELD
The present invention relates to fabric softening compositions, particularly to compositions that soften without adversely affecting the absorbency of the fabric and which deposit well onto the fabric without being detrimentally affected by anionic carry-over from the wash.
BACKGROUND AND PRIOR ART
Rinse added fabric softener compositions are well known. However, a disadvantage associated with conventional rinse conditioners is that although they increase the soft feel of a fabric they simultaneously decrease the fabric's absorbency. A decrease in the absorbency properties of a fabric means that its ability to take up water decreases. This is particularly disadvantageous with towels where the consumer requires the towel to be soft, and yet, have a high absorbency.
WO 98/16538 (Unilever) discloses fabric conditioning compositions comprising liquid or soft solid derivatives of a cyclic polyol or a reduced saccharide which give good softening but retain absorbency of the fabric.
EP 0 380 406 (Colgate-Palmolive) discloses detergent compositions comprising a saccharide or reduced saccharide ester containing at least one fatty acid chain.
WO 95/00614 (Kao Corporation) discloses softening compositions comprising polyhydric alcohol esters and cationised cellulose.
DE 19732073 (Henkel) discloses nitrogen free rinse conditioners containing water, anionic surfactants and fatty materials.
U.S. Pat. No. 5,447,643 (Hüls) discloses aqueous fabric softeners comprising nonionic surfactants and mono,di or tri fatty acid esters of certain polyols.
EP 607529 (Huels) discloses nonionic fabric softening agents stabilised by cationic colloids.
WO 96/15213 (Henkel) discloses textile softening agents containing alkyl, alkenyl and/or acyl group containing sugar derivatives, which are solid after esterification, in combination with nonionic and cationic emulsifiers.
A further problem associated with fabric softening agents that are not cationic in nature is that deposition onto a fabric is often inadequate which generally leads to softening results that are not as good as the consumer requires. In order to achieve deposition of such compositions a cationic surfactant deposition aid is typically used. However such deposition aids are usually adversely affected by anionic carry over from the wash and so high levels are needed to provide good results.
The present invention is directed towards alleviating the problems associated with the prior art as referred to hereinabove.
The principal advantages of the present invention include that excellent softening of the fabric is achieved without detriment to the absorbency of the fabric, the softening agent deposits well onto fabric and is not unduly adversely affected by anionic carryover from the wash. Furthermore the compositions are easily manufactured.
DEFINITION OF THE INVENTION
Thus according to one aspect of the invention there is provided a fabric softening composition comprising:
(i) at least one nonionic fabric softening agent and
(ii) at least one anionic surfactant, and
(iii) at least one cationic polymer
wherein the particles formed from i), ii) and iii) have an overall net negative charge and the composition comprises no more than 1% by weight non-polymeric cationic surfactant and/or cationic fabric softening compounds.
It has been found, surprisingly, that these compositions provide an unexpected combination of simultaneous fabric softening and retention of absorbency and also deposit well onto the fabric without being detrimentally affected by anionic carry-over from the wash.
The invention also provides a method of depositing a nonionic fabric softening agent onto fabric from a fabric softening composition, comprising emulsifying the softening agent with an anionic surfactant and a cationic polymer to form a particle having an overall negative charge in the composition and treating said fabric with said composition.
The invention further provides a method of depositing a nonionic fabric softening agent onto fabric from a fabric softening composition comprising emulsifying the softening agent with an anionic surfactant and then post-dosing an aqueous solution of a cationic polymer to form a particle having an overall negative charge in the composition and treating said fabric with said composition.
In the compositions of the invention the particles formed from the fabric softening agent, the anionic surfactant and cationic polymer have an overall net negative charge. This is measured by Zeta potential measurements (e.g. as measured on a Malvern Instrument Zeta-Sizer).
It is particularly surprising that the particles deposit onto the fabric because of their overall net charge. Without wishing to be bound by theory it is believed that the above overall negatively charged particles have sufficient local positive charge associated with the polymer to allow them to deposit onto the surface of the fabric.
DETAILED DESCRIPTION OF THE INVENTION
Fabric Softening Agents
The compositions of the invention comprise at least one fabric softening agent chosen from nonionic fabric softeners.
The nonionic fabric softener may be any such suitable softener, but, particularly preferred nonionic softeners are the CPE and RSE compounds as defined herein.
In the context of the present invention the initials CPE or RSE stand for a liquid or soft solid derivative of a cyclic polyol or a reduced saccharide respectively which results from 35 to 100% of the hydroxyl groups of the cyclic polyol or reduced saccharide being esterified and/or etherified, the CPE or RSE having two or more ester or ether groups independently attached to a C
8
to C
22
alkyl or alkenyl chain.
The CPE or RSE used according to the invention does not have any substantial crystalline character at 20° C. Instead it is preferably in a liquid or soft solid state as herein defined at 20° C.
The liquid or soft solid (as hereinafter defined) CPEs or RSEs of the present invention result from 35 to 100% of the hydroxyl groups of the starting cyclic polyol or reduced saccharide being esterified or etherified with groups such that they are in the requisite liquid or soft solid state.
Typically the CPE's or RSE's have 3 or more ester or ether groups or mixtures thereof, for example 3 to 8, e.g. 3 to 5. Preferably the CPE or RSE has 4 or more ester or ether groups. It is preferred if two or more of the ester or ether groups of the CPE or RSE are independently of one another attached to a C
8
to C
22
alkyl or alkenyl chain. The C
8
to C
22
alkyl or alkenyl groups may be branched or linear carbon chains.
Preferably 35 to 85% of the hydroxyl groups of the cyclic polyol or reduced saccharide, most preferably 40 to 80%, even more preferably 45 to 75%, such as 45 to 70% are esterified or etherified.
Preferably the CPE or RSE contains 35% tri or higher esters, e.g. at least 40%.
CPEs are preferred for use with the present invention. Inositol is a preferred example of a cyclic polyol. Inositol derivatives are especially preferred.
In the context of the present invention the term cyclic polyol encompasses all forms of saccharides. Indeed saccharides are especially preferred for use with this invention. Examples of preferred saccharides from which the CPE's or RSE's may be derived are monosaccharides and disaccharides.
Examples of monosaccharides include xylose, arabinose, galactose, fructose, sorbose and glucose. Glucose is especially preferred. Examples of disaccharides include maltose, lactose, cellobiose and sucrose. Sucrose is especially preferred.
An example of a reduced saccharide is sorbitan.
The liquid or soft solid CPE's or RSE's of the present invention can be prepared by a variety of methods well known to those skilled in the art. These methods include acylation of the cyclic polyol or reduced saccharide with an acid chloride; trans-esterification of the cyclic polyol or reduced saccharide fatty acid esters using a variety of catalysts; acylation of the cyclic polyol or reduced saccharide with an acid anhydride and acylation of the cyclic polyol or reduce
Grainger David Stephen
Green Andrew
Mohammadi Mansur Sultan
Roth Stephane
Thompson Laurence Griffith
Hardee John
Plotkin Ellen
Unilever Home & Personal Care USA , division of Conopco, Inc.
LandOfFree
Fabric softening compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fabric softening compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fabric softening compositions will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3210206