Fabric coating composition with latent heat effect and a...

Compositions – Compositions for enhancing the appearance of consumer...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C252S008610, C252S070000, C252S073000, C252S077000, C252S078100, C165S104170, C165S104210, C521S065000, C523S223000, C524S081000, C524S156000, C524S196000, C524S198000

Reexamination Certificate

active

06814882

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of Invention
The present invention relates to a method for fabricating a fabric coating composition. More specifically, the present invention relates to a method for fabricating a fabric coating composition with phase-change material microcapsules.
2. Description of Related Art
Heat storage (release) materials, namely phase-change materials (PCMS), undergoes physical phase changes, e.g. solid phase to liquid phase or liquid phase to solid phase, in a specific temperature range. Indeed, many materials can be regarded as PCMS in a particular temperature range. For example, in the temperature range of about 0° C., water-ice can be used as PCMS.
Two factors need to be considered for choosing PCMS, including the temperature range that PCMS is applicable and the amount of latent heat absorbed or released by PCMS during the phase change. Basically, PCMS having the proper temperature range is selected based on the environmental temperature requirements. Preferably, PCMS with larger latent heat changes are used. Since larger latent heat change allows more heat being absorbed/released during the phase change, PCMS can stay in the phase-change temperature range for a longer period.
During the heating process, the temperature of PCMS keeps rising until the melting point is reached. During the phase changing process, the temperatures of PCMS and the surrounding environment stay constant until the phase changing process is completed. If PCMS is further heated, the temperature of PCMS will go up.
If PCMS is cooled down to the phase-change crystallization temperature, latent heat will be released. As PCMS changes from liquid phase to solid phase, the temperature of PCMS keeps constant until the phase changing process is completed. After that, the temperature of PCMS keeps decreasing if it is further cooled down.
In general, PCMS changes between liquid phase and solid phase in real applications. PCMS needs to be enclosed by a covering layer to prevent loss, especially PCMS in liquid phase. Therefore, a recent technology has been developed to wrap PCMS with microcapsules, in order not to lose liquid-phase PCMS.
PCMS can be applied in the field of textile. Ordinarily, PCMS is enclosed within microcapsules and then implanted into the fibers or coated onto the fabrics. In addition to the latent heat effect, the fabrics coated with PCMS microcapsules have to provide breathability, flexibility, washability and durability, and have resistance for temperature and pressure variation as well as resistance for chemicals, in the processing steps.
The prior microcapsules for enclosing PCMS have hydrophobic shells and are dispersed in the organic solution, so that the organic solution has to be removed in order to obtain microcapsule powders or the microcapsule slurry. In U.S. Pat. No. 6,207,738, titled “FABRIC COATING COMPOSITION CONTAINING ENERGY ABSORBING PHASE CHANGE MATERIAL” and published in Mar. 27, 2001, a fabric coating composition is disclosed including an aqueous solution having microcapsules made of paraffinic hydrocarbon PCMS, a polymeric binder, a surfactant, a dispersant, an antifoam agent and a thickener.
In U.S. Pat. No. 6,503,976, titled “FABRIC COATING COMPOSITION CONTAINING ENERGY ABSORBING PHASE CHANGE MATERIAL AND METHOD OF MANUFACTURING SAME” and published in Jan. 7, 2003, the manufacturing method for the above mentioned coating composition in U.S. Pat. No. 6,207,738 is disclosed. The method comprises mixing microcapsules made of paraffinic hydrocarbon PCMS, the surfactant, the dispersant and the thickener with water to form a first dispersion solution. An antifoam agent is then added. Next, the polymeric binder, the surfactant, the dispersant, the antifoam agent and the thickener are mixed with water to form a second dispersing solution. The first and second dispersing solutions are then combined to form the coating solution.
Since the coating solution for the fabrics requires excellent dispersibility of microcapsules and the prior coating solution uses microcapsules with hydrophobic shells, it is necessary to go through complicated procedures in treating the prior coating solution, so as to obtain good dispersibility of the microcapsules.
Because the microcapsules with hydrophobic shells are used in the prior coating solution, the prior polymeric binders are either hydrophobic polymeric binders, such as a polymer made from acrylic ester, styrene, isoprene, acrylonitrile, butadiene, vinyl acetate, vinyl chloride, vinyidiene chloride, ethylene, butylenes, propylene and chloroprene, or silicone, epoxy, polyurethane, fluorocarbons, chlorosulfonated polyethylene or chlorinated polyethylene. In order to make sure these hydrophobic polymeric binders being dispersed in the water phase, surfactants and dispersants turn out to be indispensable additives.
Although the water-phase dispersing solution is used, instead of using the organic phase dispersing solution, to prevent damages to microcapsules resulting from the organic solvent, adding surfactants and dispersants in bulk in the above two patents lengthens the process time for the coating solution. As disclosed in U.S. Pat. No. 6,503,976, the first dispersing solution is required to set for 1-48 hours, preferably 6-24 hours, which is very time-consuming and uneconomic. Hence, it is desirable to obtain the appropriate coating composition (solution) with simple processes, but without the addition of surfactants and dispersants.
SUMMARY OF THE INVENTION
It is appreciated that dispersibility of microcapsules in the water phase is greatly improved by using microcapsules with hydrophilic shells, instead of using prior microcapsules with hydrophobic shells.
Accordingly, the present invention provides a fabric coating solution with latent heat effects, in which microcapsules are evenly distributed without adding surfactants or dispersants.
The present invention provides a fabric coating solution with latent heat effects, which is an aqueous solution.
The present invention provides a fabric coating solution with latent heat effects, which comprises microcapsules having hydrophilic shells.
The present invention provides a method for manufacturing a fabric coating solution with latent heat effects, which produces the appropriate fabric coating solution by way of one step process. A short duration of between about 10 minutes and 6 hours is required for the fabric coating solution to set.
In the fabric coating solution of the present invention, the microcapsules for embedding PCMS have hydrophilic shells that are formed by an interfacial condensation polymerization method.
The material of the hydrophilic shell is the polymer polymerized from waterborne polyurethane in the water phase and lipophilic monomer in the organic phase. The waterborne polyurethane in the water phase is, for example, waterborne polyurethane containing 2,2-bis(hydroxymethyl) propionic or its triethylamine salt, waterborne urethane containing sulfite diethylamine salt and mixtures thereof. The lipophilic monomer in the organic phase is, for example, melamine or isocyanate salt.
The phase-change material is selected from the following group consisting of carboxylic ester, alkyl or aromatic hydrocarbons, saturated or unsaturated C6-C30 fatty acids, aliphatic alcohols, C6-C30 aliphatic amines, esters, natural or synthetic wax, halogenated hydrocarbons and mixtures thereof. Esters can be C1-C10 alkyl fatty acid esters, such as, propyl (or methyl) palmitate, methyl stearate, methyl palmitate or mixtures thereof or methyl cinnamate.
After homogenized in high speed, emulsified and heating, the PCMS enclosed microcapsules are dispersed in the water phase. Finally, a solution having 25%-55% solids is obtained. The size of the microcapsules is between about 1 micron and 10 microns. The polymeric binder and the thickener are added into the microcapsule solution and the mixture is stirred in a speed of 1000-4000 rpm until the viscosity of the solution is between about 6000 cps and 12000 cps. The microcapsule solution is kept still for 10 minutes to 6 hour

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fabric coating composition with latent heat effect and a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fabric coating composition with latent heat effect and a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fabric coating composition with latent heat effect and a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3363622

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.