Eyecup shield with finger ports

Optics: eye examining – vision testing and correcting – Eye examining or testing instrument

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06637881

ABSTRACT:

FIELD OF THE INVENTION
The present invention generally relates to eyecup shields used to shield an eye or eyes from ambient light during ocular examinations. More particularly, the present invention relates to eyecup shields with finger ports to allow manipulation of the eye during examination. Furthermore, the present invention relates to eyecup shields with finger ports and disposable opaque covers.
BACKGROUND OF THE INVENTION
Pupillary response must be measured as part of the neurological evaluation of patients or subjects during testing or examination. Adverse conditions including direct light may diminish the ability of optometrists, ophthalmologists, nurses, critical care doctors, emergency doctors, neurosurgeons, other caregivers, or examiners to take reliable measurements and to acquire accurate response data. Changing light conditions have the potential to bias results thus masking important findings or indicating false positives. The incorporation of a shield or eyecup can prevent some of the negative effects of the adverse conditions. However, in unresponsive or non-cooperative patients, the need exists to hold the eyelid open making the use of eyecups impractical or impossible. And even in responsive patients, the caregiver may need to manipulate the eye during the exam, and this again makes the use of eyecups impractical or impossible.
Known eyecups restrict access to the eye because they surround the eye. Therefore, eyecups can only be used on conscious and responsive patients, and when the need to manipulate or prop the eyes open with a medical device or fingers arises, the eyecup must be removed. Current eyecups are therefore inappropriate for data acquisition when used on patients whose eyes must be manipulated by the caregiver during the examination. Therefore, a need exists for eyecup shields that enable physicians and other caregivers to physically manipulate the eye while shielding it from ambient light.
SUMMARY OF THE INVENTION
In one particularly innovative aspect, the invention comprises an eyecup shield with access ports that allow for the eyelid of a patient to be manually manipulated or opened during the acquisition of pupillary response data. The device is structured so that the eye being measured is shielded from ambient light, while permitting finger access or medical device access to the eyelid.
The eyecup shield comprises a barrel that can be substantially cylindrical or frustoconical, having one end adapted for coupling to a pupilometer or other ocular examination equipment, while the other end can be adapted for placement around a patient's or subject's eye. The barrel has a lumen and an outer wall. The wall of the barrel can be substantially rigid and can be made of an opaque material or any material that is substantially impervious to light. The eyecup shield can have one, two, three, four, five, or more access ports disposed around its distal end, enabling a physician, caregiver, or examiner access to a patient's or subject's eye while using the eyecup shield.
In one embodiment, the eyecup shield has two access ports that are diametrically opposed. In another embodiment, the eyecup shield has four access ports that are spaced at equal intervals. The access ports can be disposed such that the center or axis of each access port lies on one plane in the distal region of the eyecup shield. Alternatively, the access ports can be staggered so that their centers are not all on the same plane. A flexible ring can be coupled to the distal end of the eyecup shield for added comfort to the patient and for adaptability of the eyecup shield to the contours of any patient's or subject's face. The flexible ring can be made of foam or any other soft and malleable material and can be sterile and disposable for added safety.
In accordance with another embodiment, the eyecup shield can include opaque patches covering the access ports further limiting the entry of light into the field of view of the eye during use. The patches can be made of a material that is flexible and substantially impervious to light. For example, they can be latex and tinted a color, such as black, that limits the influx of light. The patches can be coupled to the eyecup shield using an adhesive to secure them either to the outer wall of the eyecup shield or to the inner wall or both. Alternatively, they can be stitched, stapled, or coupled in any manner known to those skilled in the art. The patches can be disposable and sterile allowing for a sanitary approach to open or manipulate an eye. The patches can be flat, or they can be shaped to form a lumen. In either case, they can be flexible, thus allowing for the insertion of fingers or medical devices into the lumen of the barrel without penetrating the patches. A doctor, caregiver or examiner is therefore able to manipulate a patient's or subject's eye in a sterile environment.
In accordance with yet another embodiment, the eyecup shield can be used in combination with a disposable jacket or cover rather than patches. The disposable jacket can be made of a material that is flexible and substantially impervious to light. For example, it can be latex and tinted a color, such as black, that limits the influx of light. The disposable jacket is slipped over the distal end of the eyecup shield and over the one or more access ports. The disposable jacket can be frictionally engaged with the outer wall of the eyecup shield or it can be glued, stitched, stapled or coupled in any other manner known to those skilled in the art. The proximal and distal ends of the jacket can have collars that secure the jacket to the outer wall of the eyecup shield.
The jacket can be formed from a flat latex sheet that is joined at its ends to form a latex cylinder or frustocone depending on the shape of the eyecup. The sheet should be wide enough to cover the access ports and long enough so that the cylinder or frustocone formed by joining the ends of the sheet has a diameter that is the same or slightly smaller than the diameter of the distal end of the eyecup. Alternatively, the latex sheet can have preformed protuberances that extend slightly through the access ports of the eyecup when the sheet is formed into a cylinder or frustocone.
In another embodiment, the invention is directed to an eyecup shield that can be placed over a caregiver's fingers while the caregiver or examiner is propping open or manipulating a patient's or subject's eye. The eyecup shield can be cylindrical or frustoconical, with a proximal end that is adapted for attachment to an ocular examination device such as a pupilometer or ophthalmoscope, while the distal end is adapted for engagement with a patient's or subject's face. The distal end includes a distal rim forming one or more arches for finger or medical device access. The distal rim can have one, two, three, four, five or more arches along its perimeter. In case of two or more arches, they can be spaced in any manner. In one embodiment, the eyecup shield has two arches that are diametrically opposed. In another embodiment, the eyecup shield has four arches spaced along the distal rim in equal intervals.
In another embodiment, the arches can be covered with patches, similar to those described above and coupled to the eyecup shield in the same manner as described above. In an alternative embodiment, the arches can be covered with a disposable jacket similar to the one described above and coupled to the eyecup shield in the same manner as described above.
In another embodiment, the invention is directed to an eyecup shield comprising a substantially rigid cylinder or frustocone with a substantially flexible skirt coupled concentrically around its distal end. The flexible skirt can be frictionally engaged with the distal end of the eyecup shield or it can include a collar that holds the skirt to the distal end of the eyecup shield.
The cylinder can be made of an opaque material or any material that is colored or adapted to be substantially impervious to light. Likewise

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Eyecup shield with finger ports does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Eyecup shield with finger ports, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Eyecup shield with finger ports will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3140102

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.