Plastic and nonmetallic article shaping or treating: processes – With measuring – testing – or inspecting – Controlling rate of movement of molding material or its...
Reexamination Certificate
2000-08-15
2003-03-18
Tentoni, Leo B. (Department: 1732)
Plastic and nonmetallic article shaping or treating: processes
With measuring, testing, or inspecting
Controlling rate of movement of molding material or its...
C264S209200, C264S209800, C264S210200, C425S145000, C425S380000, C425S382300, C425S382400, C425S466000, C425S467000
Reexamination Certificate
active
06533973
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates generally to the formation of shaped objects from expanded biodegradable materials, and, in particular, to an extrusion die for ultimately forming sheets of biodegradable material.
Biodegradable materials are presently in high demand for applications in packaging materials. Commonly used polystyrene (“Styrofoam” (Trademark)), polypropylene, polyethylene, and other non-biodegradable plastic-containing packaging materials are considered detrimental to the environment and may present health hazards. The use of such non-biodegradable materials will decrease as government restrictions discourage their use in packaging applications. Indeed, in some countries in the world, the use of styrofoam (trademark) is already extremely limited by legislation. Biodegradable materials that are flexible, pliable and non-brittle are needed in a variety of packaging applications, particularly for the manufacture of shaped biodegradable containers for food packaging. For such applications, the biodegradable material must have mechanical properties that allow it to be formed into and hold the desired container shape, and be resistant to collapsing, tearing or breaking.
Starch is an abundant, inexpensive biodegradable polymer. A variety of biodegradable based materials have been proposed for use in packaging applications. Conventional extrusion of these materials produces expanded products that are brittle, sensitive to water and unsuitable for preparation of packaging materials. Attempts to prepare biodegradable products with flexibility, pliability, resiliency, or other mechanical properties acceptable for various biodegradable packaging applications have generally focused on chemical or physio-chemical modification of starch, the use of expensive high amylose starch or mixing starch with synthetic polymers to achieve the desired properties while retaining a degree of biodegradability. A number of references relate to extrusion and to injection molding of starch-containing compositions.
U.S. Pat. No. 5,397,834 provides biodegradable, thermoplastic compositions made of the reaction product of a starch aldehyde with protein. According to the disclosure, the resulting products formed with the compositions possess a smooth, shiny texture, and a high level of tensile strength, elongation, and water resistance compared to articles made from native starch and protein. Suitable starches which may be modified and used according to the invention include those derived, for example, from corn including maize, waxy maize and high amylose corn; wheat including hard wheat, soft wheat and durum wheat; rice including waxy rice; and potato, rye, oat, barley, sorghum, millet, triticale, amaranth, and the like. The starch may be a normal starch (about 20-30 wt-% amylose), a waxy starch (about 0-8 wt-% amylose), or a high-amylose starch (greater than about 50 wt-% amylose).
U.S. Pat. Nos. 4,133,784, 4,337,181, 4,454,268, 5,322,866, 5,362,778, and 5,384,170 relate to starch-based films that are made by extrusion of destructurized or gelatinized starch combined with synthetic polymeric materials. U.S. Pat. No. 5,322,866 specifically concerns a method of manufacture of biodegradable starch-containing blown films that includes a step of extrusion of a mixture of raw unprocessed starch, copolymers including polyvinyl alcohol, a nucleating agent and a plasticizer. The process is said to eliminate the need of pre-processing the starch. U.S. Pat. No. 5,409,973 reports biodegradable compositions made by extrusion from destructurized starch and an ethylenevinyl acetate copolymer.
U.S. Pat. No. 5,087,650 relates to injection-molding of mixtures of graft polymers and starch to produce partially biodegradable products with acceptable elasticity and water stability.
U.S. Pat. No. 5,258,430 relates to the production of biodegradable articles from destructurized starch and chemically-modified polymers, including chemically-modified polyvinyl alcohol. The articles are said to have improved biodegradability, but retain the mechanical properties of articles made from the polymer alone.
U.S. Pat. No. 5,292,782 relates to extruded or molded biodegradable articles prepared from mixtures of starch, a thermoplastic polymer and certain plasticizers.
U.S. Pat. No. 5,095,054 concerns methods of manufacturing shaped articles from a mixture of destructurized starch and a polymer.
U.S. Pat. No. 4,125,495 relates to a process for manufacture of meat trays from biodegradable starch compositions. Starch granules are chemically modified, for example with a silicone reagent, blended with polymer or copolymer and shaped to form a biodegradable shallow tray.
U.S. Pat. No. 4,673,438 relates to extrusion and injection molding of starch for the manufacture of capsules.
U.S. Pat. No. 5,427,614 also relates to a method of injection molding in which a non-modified starch is combined with a lubricant, texturing agent and a melt-flow accelerator.
U.S. Pat. No. 5,314,754 reports the production of shaped articles from high amylose starch.
EP published application No. 712883 (published May 22, 1996) relates to biodegradable, structured shaped products with good flexibility made by extruding starch having a defined large particle size (e.g., 400 to 1500 microns). The application exemplifies the use of high amylose starch and chemically-modified high amylose starch.
U.S. Pat. No. 5,512,090 refers to an extrusion process for the manufacture of resilient, low density biodegradable packaging materials, including loose-fill materials, by extrusion of starch mixtures comprising polyvinyl alcohol (PVA) and other ingredients. The patent refers to a minimum amount of about 5% by weight of PVA.
U.S. Pat. No. 5,186,990 reports a lightweight biodegradable packaging material produced by extrusion of corn grit mixed with a binding agent (guar gum) and water. Corn grit is said to contain among other components starch (76-80%), water (12.5-14%), protein (6.5-8%) and fat (0.5-1%). The patent teaches the use of generally known food extruders of a screw-type that force product through an orifice or extension opening. As the mixture exits the extruder via the flow plate or die, the super heated moisture in the mixture vaporizes forcing the material to expand to its final shape and density.
U.S. Pat. No. 5,208,267 reports biodegradable, compressible and resilient starch-based packaging fillers with high volumes and low weights. The products are formed by extrusion of a blend of non-modified starch with polyalkylene glycol or certain derivatives thereof and a bubble-nucleating agent, such as silicon dioxide.
U.S. Pat. No. 5,252,271 reports a biodegradable closed cell light weight loose-fill packaging material formed by extrusion of a modified starch. Non-modified starch is reacted in an extruder with certain mild acids in the presence of water and a carbonate compound to generate CO
2
. Resiliency of the product is said to be 60% to 85%, with density less than 0.032 g/cm
3
.
U.S. Pat. No. 3,137,592 relates to gelatinized starch products useful for coating applications produced by intense mechanical working of starch/plasticizer mixtures in an extruder. Related coating mixtures are reported in U.S. Pat. No. 5,032,337 which are manufactured by the extrusion of a mixture of starch and polyvinyl alcohol. Application of thermomechanical treatment in an extruder is said to modify the solubility properties of the resultant mixture which can then be used as a binding agent for coating paper.
Biodegradable material research has largely focused on particular compositions in an attempt to achieve products that are flexible, pliable and non-brittle. The processes used to produce products from these compositions have in some instances, used extruders. For example, U.S. Pat. No. 5,660,900 discloses several extruder apparatuses for processing inorganically filled, starch-bound compositions. The extruder is used to prepare a moldable mixture which is then formed into a desired configuration by heated molds.
U. S. Pat. No. 3,734,672 discloses an extrusion
Bittner Donald R.
Franke Hans G.
Baker & Botts L.L.P.
Tentoni Leo B.
LandOfFree
Extrusion die for biodegradable material with die orifice... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Extrusion die for biodegradable material with die orifice..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Extrusion die for biodegradable material with die orifice... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3071142