Extruded metallic electrical connector assembly and method...

Electrical connectors – Electromagnetic or electrostatic shield – Multi-part shield body

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C439S108000, C439S701000

Reexamination Certificate

active

06283792

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention pertains to electrical connectors, and in particular, to an extruded metallic electrical connector assembly which has a unique module configuration having a plurality of contacts in densities of two mm or less and providing complete insulation coverage for the contacts. A method of producing an extruded metallic electrical connector assembly is also disclosed.
Electrical connectors are used in many different types of electrical and electronic systems. They come in various sizes depending on the physical and electrical parameter of the installation. Some high-speed digital signal applications require multiple contact connectors in a single rectangular module that are held together and stackable without distorting or adversely modifying the signal intelligence. Digital signals must have a high degree of signal integrity on entering and exiting an electrical connector system. Requirements for connector types, in increasingly high speed applications include a high degree of shielding, preventing signal distortion from outside Electromagnetic Interference (EMI) and low inductance and resistance for signal and return signal paths.
Rectangular connectors with multiple contacts that are 2 (two) mm or less in center spacing have limits in contact density and signal shielding by currently employed manufacturing processes. However, electronic systems that use high-speed connectors continue to shrink in physical size and require increasing signal density reducing physical size requirements for connectors. Current rectangular connectors having a plurality of contacts have limits in providing dense signal packaging and shielding of each individual contact within the connector-housing module.
Although classical round coaxial connectors have contiguous shielding along the contact length and provide low inductance and good signal integrity, they do not offer the plurality of contacts in the densities of two mm or less in a rectangular configuration. In round coaxial connections multiple contiguous contacts cannot be densely packed or stacked in a module form to densities attainable in a rectangular configuration. Connectors of a rectangular shape, having a plurality of contacts 2 mm or less for high-speed signal application, use a combination of injection molded plastics either riveted or press fitted to metal plates to simulate shielding and reduce inductance and resistance to improve signal integrity. However, these connector systems, while providing greater contact densities than round coaxial connectors, do not provide a contiguous metal cavity along the length of each individual contact. Instead only one or two sides of each individual contact has a shield vs. all 4 sides of the extruded connector-housing module described here.
U.S. Pat. Nos. 5,176,538 and 4,846,727 try to achieve a metal housing enclosure for connectors having a plurality of contacts by combining injection molded plastic pieces with metal plates added on the assembly to provide a simulated shielding configuration for the signal pin. Neither of these patents encloses each contact pin along four sides of the contact pin length and thus compromise the shielding of the individual contact pins. These connectors are limited by using traditional construction methods in signal pin density for rectangular connector modules having a plurality of contacts with contact spacing of 2 mm or less. Limits in material thickness and process controls used in assembling the connector module (injection molding, metal- stamping, press fitting etc.) limit four sided shielded density. Each contact in these multiple contact connectors is surrounded by injection molded plastic and the entire assembly or module is then fitted with metal plates on one or two sides of the assembly to provide shielding only on one or two sides of the connector-housing module.
Other contemporary U.S. Pat. Nos. 4,451,107 and 4,655,518 are also limited in creating a low inductance and low resistance path to ground. U.S. Pat. No. 4,451,107 is a die cast zinc housing to provide grounds and shields for the signals. However zinc die cast material has higher electrical resistance and inductance path then other materials like copper or copper alloy and has limits in material thickness for contact spacings on 2 mm or less.
U.S. Pat. No. 4,655,518 employs ground contacts located on the outside of the parallel casing. Neither of these patents form the low inductance and resistance path to ground afforded by a contiguous metal module that shields individual contact on all four sides in the housing module. What is needed is a multiple cavity extruded metallic electrical connector assembly that provides complete shielding for each cavity housing an electrical contact that is simple to manufacture. It is the object of this invention to teach an extruded metallic electrical connector assembly that avoids the disadvantages and limitations, recited above in other electrical connector assemblies for contact spacing on 2 mm or less.
SUMMARY OF THE INVENTION
It is the object of this invention to teach a extruded metallic electrical connector assembly, for use in situations requiring electrical connector contacts having a density of two mm on center (i.e., as measured between the center of adjacent electrical contacts or channels) or less and, at the same time, having each of the contacts be completely shielded on four sides, comprising a housing; said housing having a plurality of channels positioned therein; a contact being positioned within each of channels within said housing; guide means positioned at one end of said housing for directing said contacts into said channels within said housing; at least one intermediate printed circuit board; said intermediate circuit board having receiving slots positioned therein for receiving each of said contacts on one end and a means of connecting an electrical cable on the other end comprising a cable assembly; said intermediate printed circuit board further having grounding means attached for providing a ground for said housing; and means for supporting and positioning said electrical contacts.
It is also the object of this invention to teach an extruded metallic electrical connector assembly, for use in situations requiring electrical connector contacts having an density of two mm on center or less and, at the same time, having each or the contacts be completely shielded, comprising a housing; said housing having at least one channel positioned therein; a plurality of conductors being positioned within each of channels within said housing; guide means positioned at one end of said housing for directing said conductors into said channels within said housing; at least one electronic printed circuit board or mother board; said electronic circuit board having receiving slots positioned therein on one end for receiving each of said plurality of conductors and, on the other end, is mounted to said circuit or mother board on the other end; said electronic printed circuit board further having grounding means attached for providing a ground for said conductors; and means for supporting and positioning said electrical contacts.
Finally, it is the object of this invention to teach a method of producing an extruded metallic electrical connector assembly, for use in situations requiring electrical connector contacts having an density of two mm on center or less and, at the same time, having each or the contacts be completely shielded, comprising the steps of extruding a continuous metal housing having a plurality of channels positioned therein; cutting said housing to the desired length; coating the inside of said channels of said metal housing with an insulation material; installing the mating guides; installing the printed circuit board into said housing; terminating cable to the printed circuit board assembly; welding the assembly to the housing.


REFERENCES:
patent: 5162001 (1992-11-01), Harwath et al.
patent: 5346412 (1994-09-01), Fedder et al.
patent: 5460533 (1995-10-01), Broeksteeg et al.
patent: 5518422 (1

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Extruded metallic electrical connector assembly and method... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Extruded metallic electrical connector assembly and method..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Extruded metallic electrical connector assembly and method... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2475153

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.