Extramedullary femoral clamp guide system for total knee...

Surgery – Instruments – Orthopedic instrumentation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S08600R, C606S102000

Reexamination Certificate

active

06258096

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an extramedullary femoral clamp guide system for total knee arthroplasty that enables cutting a portion of the distal end of a femur perpendicularly to an ideal weight bearing axis of the femur as viewed in an antero-posterior image of the femur and cutting a portion of the frontal surface of a distal end part of the femur in parallel to he frontal surface of the distal end part of the femur.
2. Description of the Related Art
There are two systems for determining the angular position of a femoral component in total knee arthroplasty, i.e., an intramedullary guide system that inserts a rod into the medullary cannel of a femur, and an extramedullary guide system that connects a rod to a femur cutting guide, places the rod on the skin of the thigh and determines a cutting angle with respect to the femoral head as a landmark by using an X-ray image during operation.
The intramedullary guide system uses the anatomical morphology of the femur. It is reported in reports on clinical results of total knee arthroplasty that the intramedullary guide system is excellent in the accuracy of cutting angle.
The extramedullary guide system selects the femoral head as a landmark indirectly from an X-ray image during operation. Therefore, it is difficult to determine the center of the femoral head accurately. It is reported in reports on clinical results of the extramedullary guide system that cutting angle contains a large error.
An instrument for determining the mechanical axis of the femur with respect to the knee disclosed in JP-A No. Hei 8-33662 applies a tensile force to a distal end portion of the femur while the thigh is suspended by a suspender to determine an ideal weight bearing axis.
In the current total knee arthroplasty, the intramedullary guide system is used prevalently because the intramedullary guide system is superior in the accuracy of cutting angle to the extramedullary guide system.
Although the intramedullary guide system is excellent in the accuracy of cutting angle, the decision of a rod inserting portion and rod inserting angle is dependent mostly on the intuition of the surgeon. When an intramedullary guide inserting portion has bone spines, the rod inserting angle is prone to contain an error. Since the position of the tip of the rod is not fixed when the medullary canal is wide, cutting angle is prone to contain an error.
The intramedullary guide system cannot be applied to a curved or warped femur because it is difficult to insert the intramedullary rod into the medullary canal of a curved or warped femur.
It is reported that the bone is chipped when a guide is inserted in the distal end part of a femur for the intramedullary guide system, the normal circulation of the blood is obstructed due to the crushing and destruction of femoral medullary tissues, and serious fat embolism that cause sudden obstruction of blood vessels of the principal organs is created by the intramedullary guide system.
The invention disclosed in JP-A No. Hei 8-33662 needs a special suspender for suspending the entire leg, a device for fixedly holding the suspender on an operating table and troublesome operations, and hence the operation takes time. Furthermore, it is possible that a clean operating field becomes unclean because the position of the leg is unstable and the clean suspender is inserted through the unclean fixing device into the clean operating field.
SUMMARY OF THE INVENTION
The present invention has been made in view of the foregoing problems and it is an object of the present invention to provide an extramedullary femoral clamp guide system for total knee arthroplasty, using the anatomical shape of the femoral distal shaft as a reference shape and capable of ensuring an accuracy equal to or higher than that can be ensured by the intramedullary femoral guide system.
According to the present invention, an extramedullary femoral clamp guide system includes a first clamp having a pair of holding members for clamping a first portion of a distal end part of a femur therebetween; a second clamp having a pair of holding members for clamping a second portion of the distal end part the femur nearer than the first portion of the same to the proximal end of the femur; a connecting mechanism connecting the first and the second clamp so that the first clamp can be translated relative to the second clamp; and an extramedullary rod connected to the connecting mechanism so as to extend outside the femur on a straight line passing the middle point between the pair of holding members of the first clamp and that of the pair of holding members of the second clamp. In total knee arthroplasty, the joint surface of the distal end of the femur can be cut along a plane perpendicular to an ideal weight bearing axis of the femur as viewed in an antero-posterior image of the femur, and the anterior surface of the distal end of the femur can be cut along a plane parallel to the anterior surface of the distal end of the femur.


REFERENCES:
patent: 5364401 (1994-11-01), Ferrante et al.
patent: 5624444 (1997-04-01), Wixon et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Extramedullary femoral clamp guide system for total knee... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Extramedullary femoral clamp guide system for total knee..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Extramedullary femoral clamp guide system for total knee... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2561680

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.