Extracellular matrix signaling molecules

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S007210, C435S007230, C435S357000, C435S397000

Reexamination Certificate

active

06790606

ABSTRACT:

FIELD OF THE INVENTION
The present invention is directed to materials and methods involving extracellular matrix signaling molecules in the form of polypeptides involved in cellular responses to growth factors. More particularly, the invention is directed to Cyr61-, Fisp12-, and CTGF-related polynucleotides, polypeptides, compositions thereof, methods of purifying these polypeptides, and methods of using these polypeptides.
BACKGROUND OF THE INVENTION
The growth of mammalian cells is tightly regulated by polypeptide growth factors. In the adult animal, most cells are metabolically active but are quiescent with regard to cell division. Under certain conditions, these cells can be stimulated to reenter the cell cycle and divide. As quiescent cells reenter the active growth and division phases of the cell cycle, a number of specific genes, the immediate early genes, are rapidly activated. Reentry to the active cell cycle is by necessity tightly regulated, since a breakdown of this control can result in uncontrolled growth, frequently recognized as cancer. Controlled reentry of particular cells into the growth phase is essential for such biological processes as angiogenesis (e.g., blood vessel growth and repair), chondrogenesis (e.g., skeletal development and prosthesis integration), oncogenesis (e.g., cancer cell metastasis and tumor neovascularization), and other growth-requiring processes.
Angiogenesis, the formation of new blood vessels from the endothelial cells of preexisting blood vessels, is a complex process which involves a changing profile of endothelial cell gene expression, associated with cell migration, proliferation, and differentiation. Angiogenesis begins with localized breakdown of the basement membrane of the parent vessel. In vivo, basement membranes (primarily composed of laminin, collagen type IV, nidogen/entactin, and proteoglycan) support the endothelial cells and provide a barrier separating these cells from the underlying stroma. The basement membrane also affects a variety of biological activities including cell adhesion, migration, and growth during development and differentiation.
Following breakdown of the basement membrane, endothelial cells migrate away from the parent vessel into the interstitial extracellular matrix (ECM), at least partially due to chemoattractant gradients. The migrating endothelial cells form a capillary sprout, which elongates. This elongation is the result of migration and proliferation of cells in the sprout. Cells located in the leading capillary tip migrate toward the angiogenic stimulus, but neither synthesize DNA nor divide. Meanwhile, behind these leading tip cells, other endothelial cells undergo rapid proliferation to ensure an adequate supply of endothelial cells for formation of the new vessel. Capillary sprouts then branch at their tips, the branches anastomose or join with one another to form a lumen, the basement membrane is reconstituted, and a vascular connection is established leading to blood flow.
Alterations in at least three endothelial cell functions occur during angiogenesis: 1) modulations of interactions with the ECM, which require alterations of cell-matrix contacts and the production of matrix-degrading proteolytic enzymes; 2) an initial increase and subsequent decrease in endothelial cell migration, effecting cell translocation towards an angiogenic stimulus; and 3) a transient increase in cell proliferation, providing cells for the growing and elongating vessel, with a subsequent return to the quiescent cell state once the vessel is formed. These three functions are realized by adhesive, chemotactic, and mitogenic interactions or responses, respectively. Therefore, control of angiogenesis requires intervention in three distinct cellular activities: 1) cell adhesion, 2) cell migration, and 3) cell proliferation. Another biological process involving a similar complex array of cellular activities is chondrogenesis.
Chondrogenesis is the cellular process responsible for skeletal organization, including the development of bone and cartilage. Chondrogenesis, like angiogenesis, involves the controlled reentry of quiescent cells into the growth phase of the cell cycle. The growth phase transition is associated with altered cell adhesion characteristics, changed patterns of cell migration, and transiently increased cell proliferation. Chondrogenesis involves the initial development of chondrogenic capacity (i.e., the proto-differentiated state) by primitive undifferentiated mesenchyme cells. This stage involves the production of chondrocyte-specific markers without the ability to produce a typical cartilage ECM. Subsequently, the cells develop the capacity to produce a cartilage-specific ECM as they differentiate into chondrocytes. Langille,
Microscop. Res
. &
Tech
. 28:455-469 (1994). Chondrocyte migration, adhesion, and proliferation then contribute to the development of bony, and cartilaginous, skeleton. Abnormal elaboration of the programmed development of cells participating in the process of chondrogenesis results in skeletal defects presenting problems that range from cosmetic concerns to life-threatening disorders.
Like angiogenesis and chondrogenesis, oncogenesis is characterized by changes in cell adhesion, migration, and proliferation. Metastasizing cancer cells exhibit altered adhesion and migration properties. Establishment of tumorous masses requires increased cell proliferation and the elaboration of the cellular properties characteristic of angiogenesis during the neovascularization of tumors.
Abnormal progression of angiogenesis or chondrogenesis, as well as mere progression of oncogenesis, substantially impairs the quality of life for afflicted individuals and adds to modern health care costs. The features common to these complex biological processes, comprising altered cell adhesion, migration, and proliferation, suggest that agents capable of influencing all three of these cellular activities would be effective in screening for, and modulating, the aforementioned complex biological processes. Although the art is aware of agents that influence individual cellular activities, e.g., integrins and selectins (cell adhesion), chemokines (cell migration), and a variety of growth factors or cytokines (cell proliferation), until recently no agent has been identified that exerts an influence over all three cellular activities in humans.
Murine Cyr61 (CYsteine-Rich protein) is a protein expressed in actively growing and dividing cells that may influence each of these three cellular activities. RNase protection analyses have shown that the gene encoding murine Cyr61, murine cyr61, is transcribed in the developing mouse embryo. O'Brien et al.,
Cell Growth
&
Diff
. 3:645-654 (1992). In situ hybridization analysis showed that expression of cyr61 during mouse embryogenesis is closely correlated with the differentiation of mesenchymal cells, derived from ectoderm and mesoderm, into chondrocytes. In addition, cyr61 is expressed in the vessel walls of the developing circulatory system. These observations indicate that murine cyr61 is expressed during cell proliferation and differentiation, which are characteristics of expression of genes involved in regulatory cascades that control the cell growth cycle.
Further characterization of the Cyr61 polypeptide has been hampered by an inability to purify useful quantities of the protein. Efforts to purify Cyr61 in quantity by overexpression from either eukaryotic or prokaryotic cells typically fail. Yang,
University of Illinois at Chicago, Ph.D. Thesis
(1993). One problem associated with attempting to obtain useful quantities of Cyr61 is the reduction in mammalian growth rates induced by overexpression of Cyr61. Another problem with Cyr61 purification is that the cysteine-rich polypeptide, when expressed in bacterial cells using recombinant DNA techniques, is often found in insoluble protein masses. Nevertheless, Cyr6i has been characterized as a polypeptide of 349 amino acids, containing 39 cysteine residues, a hydrophobic putative N-terminal signal

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Extracellular matrix signaling molecules does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Extracellular matrix signaling molecules, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Extracellular matrix signaling molecules will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3218583

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.