Externally mounted vacuum controlled actuator with position...

Internal-combustion engines – Poppet valve operating mechanism – With means for varying timing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C074S56800M, C123S090150, C123S090310

Reexamination Certificate

active

06729283

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a hydraulic control system for controlling the operation of a variable camshaft timing (VCT) system. More particularly, the invention pertains to the use of an externally mounted vacuum controlled actuator to control the position of a center mounted spool valve.
2. Description of Related Art
U.S. Pat. No. 4,627,825 uses a pneumatic actuator to operate an external spool valve which supplies oil to the cylinders of a phaser. Phaser position is fed back via sensors on cam and crankshafts.
Consideration of information disclosed by the following U.S. patents, which are all hereby incorporated by reference, is useful when exploring the background of the present invention.
U.S. Pat. No. 5,002,023 describes a VCT system within the field of the invention in which the system hydraulics includes a pair of oppositely acting hydraulic cylinders with appropriate hydraulic flow elements to selectively transfer hydraulic fluid from one of the cylinders to the other, or vice versa, to thereby advance or retard the circumferential position of a camshaft relative to a crankshaft. The control system utilizes a control valve in which the exhaustion of fluid from one or another of the oppositely acting cylinders is permitted by moving a spool within the valve one way or another from its centered or null position. The movement of the spool occurs in response to an increase or decrease in control hydraulic pressure, P
C
, on one end of the spool and the relationship between the hydraulic force on such end and an oppositely direct mechanical force on the other end which results from a compression spring that acts thereon.
U.S. Pat. No. 5,107,804 describes an alternate type of VCT system within the field of the invention in which the system hydraulics include a vane having lobes within an enclosed housing which replace the oppositely acting cylinders disclosed by the aforementioned U.S. Pat. No. 5,002,023. The vane is oscillatable with respect to the housing, with appropriate hydraulic flow elements to transfer hydraulic fluid within the housing from one side of a lobe to the other, or vice versa, to thereby oscillate the vane with respect to the housing in one direction or the other, an action which is effective to advance or retard the position of the camshaft relative to the crankshaft. The control system of this VCT system is identical to that divulged in U.S. Pat. No. 5,002,023, using the same type of spool valve responding to the same type of forces acting thereon.
U.S. Pat. Nos. 5,172,659 and 5,184,578 both address the problems of the aforementioned types of VCT systems created by the attempt to balance the hydraulic force exerted against one end of the spool and the mechanical force exerted against the other end. The improved control system disclosed in both U.S. Pat. Nos. 5,172,659 and 5,184,578 utilizes hydraulic force on both ends of the spool. The hydraulic force on one end results from the directly applied hydraulic fluid from the engine oil gallery at full hydraulic pressure, P
S
. The hydraulic force on the other end of the spool results from a hydraulic cylinder or other force multiplier which acts thereon in response to system hydraulic fluid at reduced pressure, P
C
, from a PWM solenoid. Because the force at each of the opposed ends of the spool is hydraulic in origin, based on the same hydraulic fluid, changes in pressure or viscosity of the hydraulic fluid will be self-negating, and will not affect the centered or null position of the spool.
In U.S. Pat. No. 5,361,735, a camshaft has a vane secured to an end for non-oscillating rotation. The camshaft also carries a timing belt driven pulley which can rotate with the camshaft but which is oscillatable with respect to the camshaft. The vane has opposed lobes which are received in opposed recesses, respectively, of the pulley. The camshaft tends to change in reaction to torque pulses which it experiences during its normal operation and it is permitted to advance or retard by selectively blocking or permitting the flow of engine oil from the recesses by controlling the position of a spool within a valve body of a control valve in response to a signal from an engine control unit. The spool is urged in a given direction by rotary linear motion translating means which is rotated by an electric motor, preferably of the stepper motor type.
U.S. Pat. No. 5,497,738 uses a variable force solenoid to control the phase angle using a center mounted spool valve. This type of variable force solenoid can infinitely control the position of the phaser. The control system eliminates the hydraulic force on one end of a spool resulting from directly applied hydraulic fluid from the engine oil gallery at full hydraulic pressure, P
S
, utilized by previous embodiments of the VCT system. The force on the other end of the vented spool results from an electromechanical actuator, preferably of the variable force solenoid type, which acts directly upon the vented spool in response to an electronic signal issued from an engine control unit (“ECU”) which monitors various engine parameters. The ECU receives signals from sensors corresponding to camshaft and crankshaft positions and utilizes this information to calculate a relative phase angle. A closed-loop feedback system which corrects for any phase angle error is preferably employed. The use of a variable force solenoid solves the problem of sluggish dynamic response. Such a device can be designed to be as fast as the mechanical response of the spool valve, and certainly much faster than the conventional (fully hydraulic) differential pressure control system. The faster response allows the use of increased closed-loop gain, making the system less sensitive to component tolerances and operating environment.
None of the prior art uses vacuum actuators to move a centrally-mounted spool valve, or provides position sensors on vacuum actuators for phasers.
SUMMARY OF THE INVENTION
The present invention controls the position of a center mounted spool valve with an externally mounted vacuum controlled actuator. The actuator position is preferably controlled by a pulse width modulated or variable force solenoid to control the amount of vacuum going to the actuator. A microprocessor reads the phase angle and adjusts the duty cycle or current based on the error signal of the control loop. One method to control the position of the actuator maps the position of the actuator versus command signal. Since these types of actuators have certain manufacturing tolerances, the position of the actuator could be off as much as 10% of full travel. Therefore, a preferred embodiment also includes a position sensor to further control the position of the spool valve. The position sensor creates an inner loop with position feedback on the position of the actuator and spool valve. The outer loop controls the phase angle. Added to the spool valve position is an offset to move the spool valve to its steady state or null position. This null position is required so that the spool can move in to move the phaser in one direction and outward to move the phaser in the other direction.


REFERENCES:
patent: 4627825 (1986-12-01), Bruss et al.
patent: 5002023 (1991-03-01), Butterfield et al.
patent: 5107804 (1992-04-01), Becker et al.
patent: 5172659 (1992-12-01), Butterfield et al.
patent: 5184578 (1993-02-01), Quinn, Jr. et al.
patent: 5361735 (1994-11-01), Butterfield et al.
patent: 5497738 (1996-03-01), Siemon et al.
patent: 2002/0002824 (2002-01-01), Hirota et al.
patent: 2003/0062010 (2003-04-01), Diggs et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Externally mounted vacuum controlled actuator with position... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Externally mounted vacuum controlled actuator with position..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Externally mounted vacuum controlled actuator with position... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3267220

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.