External interfaces for a 3D graphics system

Amusement devices: games – Including means for processing electronic data – Player-actuated control structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C710S072000

Reexamination Certificate

active

06609977

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to computer graphics, and more particularly to interactive graphics systems such as home video game platforms. Still more particularly, this invention relates to external system interfaces used to connect a graphics system to audio, video, mass media storage device, other storage device, communications, printing and other electronic devices.
BACKGROUND AND SUMMARY OF THE INVENTION
Many of us have seen films containing remarkably realistic dinosaurs, aliens, animated toys and other fanciful creatures. Such animations are made possible by computer graphics. Using such techniques, a computer graphics artist can specify how each object should look and how it should change in appearance over time, and a computer then models the objects and displays them on a display such as your television or a computer screen. The computer takes care of performing the many tasks required to make sure that each part of the displayed image is colored and shaped just right based on the position and orientation of each object in a scene, the direction in which light seems to strike each object, the surface texture of each object, and other factors.
Because computer graphics generation is complex, computer-generated three-dimensional graphics just a few years ago were mostly limited to expensive specialized flight simulators, high-end graphics workstations and supercomputers. The public saw some of the images generated by these computer systems in movies and expensive television advertisements, but most of us couldn't actually interact with the computers doing the graphics generation. All this has changed with the availability of relatively inexpensive 3D graphics platforms such as, for example, the Nintendo 64® and various 3D graphics cards now available for personal computers. It is now possible to interact with exciting 3D animations and simulations on relatively inexpensive computer graphics systems in your home or office.
A problem graphics system designers confronted in the past was how to efficiently couple system components together. A moderm 3D graphics system is relatively complex, and requires a number of different connections between different aspects of the system. For example, it is often necessary to interface with a mass storage device such as an optical disk. In addition, in an interactive real time system such as a gaming platform, some means must be provided to interface with user-manipulable controls such as hand-held controllers or the like. Sound is typically required, so that interfaces with various sound-producing and sound-supporting components are required. It is also necessary to provide some interfacing means for interfacing the system with a display device of an appropriate configuration. Additionally, it is often desirable to interface the system with a number of other components such as, for example, read only memory, flash memory, various memory cards, modems or other network connections, and debugging facilities for game or other application development. Various solutions to this problem were offered.
One approach would be to use standardized interfaces. Computer equipment manufacturers have developed a number of standardized interfaces in the past to connect with mass storage devices, modems, and other peripheral devices. Using standardized interfaces tends to simplify design efforts and achieve component compatibility and interoperability. The typical personal computer has a number of standardized interfaces so it can be modular and compatible with hardware and peripherals designed by a number of different manufacturers. Designing a new personal computer does not require redesign of all of these interfaces.
While the standardized interface approach has certain advantages in the arena of general purpose computing, it may not be suitable for home video game platforms. Because a home video game system must be manufactured at low cost and yet achieve maximum performance, it is desirable to optimize each and every aspect of the system—including the system interfaces. The interfaces can be looked at as the highways over which information flows throughout the system. This information traffic should flow as rapidly and efficiently as possible. Using standard interfaces may be easier from a design standpoint, but a standardized interface may not provide the high performance that a customized interface might offer. “One size fits all” makes things easier, but doesn't always result in the best possible fit.
Another issue relates to hardware interoperability. Standardized interfaces provide the advantage that no one owns them, and everyone can design components that are compatible with them. For example, when you buy a personal computer having a standardized serial interface, parallel interface and expansion device interface, you know that you can go out and purchase any of a variety of different devices all of which will be compatible with those standardized interfaces. You can plug in any of a dozen different types of printers to either the serial or the parallel interface of your personal computer, and they will all work. Similarly, any of dozens of different modems or other network cards can be plugged into the PCMCIA card slot of a personal computer or laptop, and all of these different cards will work.
Open standards have the advantage that they achieve hardware interoperability between systems and a wide range of different accessories. This approach is helpful when the system manufacturer is selling a general purpose device that can be used for virtually any application, but makes less sense in the home video game arena where a given video game manufacturer is responsible for making or licensing all of the various special-purpose accessories for its brand of home video game platform.
For example, video game manufacturers in the past have expended substantial time, effort and resources to develop definitive new home video game platforms. They want to sell as many of these as possible, and therefore price them very competitively. Like the razor manufacturer who recoups his investment by selling razor blades as opposed to the razor itself, video game platform manufacturers rely on controlling access to the installed user base of home video game systems to achieve profits through licensing. If the home video game platform used open standards, then competing manufacturing could bypass the company that invested all the time, effort and resources to develop the platform to begin with, and could instead market directly to consumers. Accordingly, under this business model, it is important for the platform manufacturer to be able to control access to the platform.
One technique used successfully in the past to control access to home video game platforms was to incorporate security systems that control access to the platform. A security system can enable the platform to accept or reject things plugged into it. As one example, it is possible to include an integrated circuit chip authentication type device in home video game cartridges. Before the home video game platform interoperates with the cartridge or other accessory, it may first authenticate the cartridge or other accessory by use of the security chip. While this approach can be highly successful, it requires each accessory to include authentication type information and/or devices. This increases cost. In addition, no security system is impenetrable. Given enough time, effort and resources, any security system can be “cracked” to unlock access to the platform. Thus, further improvements are desirable.
The present invention provides an approach to solving these problems. It provides a variety of proprietary system interfaces that have been optimized to maximize system performance. Because these optimized system interfaces are non-standard and unusual, they provide uniqueness that can be used as a basis for excluding unlicensed and unauthorized people from manufacturing components that are compatible with the interfaces. This allows a home video game platform develop

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

External interfaces for a 3D graphics system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with External interfaces for a 3D graphics system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and External interfaces for a 3D graphics system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3127871

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.