Plastic and nonmetallic article shaping or treating: processes – With severing – removing material from preform mechanically,... – Making hole or aperture in article
Reexamination Certificate
2002-12-23
2004-11-23
Mackey, James P. (Department: 1722)
Plastic and nonmetallic article shaping or treating: processes
With severing, removing material from preform mechanically,...
Making hole or aperture in article
C264S031000, C264S333000, C249S035000, C249S129000, C249S189000
Reexamination Certificate
active
06821466
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates generally to supports used for creating cured pre-cast panels and related structures, and more specifically to the configuration of extensions used to create recesses at panel edges and apertures that are used to define windows, doorways and related openings in the panel.
Many residential and commercial construction methods involve the use pre-cast structures. Pre-cast panels, for example, are integral to the tilt-up construction process. In the tilt-up approach, concrete forms are arranged on a flat casting surface in the shape and dimension of the desired tilt-up panel, then filled with concrete. When the concrete cures, the panel and the form are separated and the panel is tilted up into a preferred, typically vertical, orientation, where it can be joined to structural frames or other panels. The present inventors have recognized a need for improvements in pre-cast panel forming systems and in various components of the panel forming systems. The improvements introduced by the present invention have applicability in the tilt-up construction process and in other pre-cast construction processes.
BRIEF SUMMARY OF THE INVENTION
This need is met by the present invention wherein improvements in pre-cast panel forming systems and in various components of the panel forming systems are introduced. In accordance with one aspect of the present invention, a panel-forming system is disclosed. The panel-forming system includes a plurality of bulkheads and at least one aperture extension. The bulkheads and aperture extensions are placed on a panel-forming surface. In the present context, the bulkheads and aperture extensions are placed “on” a panel-forming surface, which is meant to be broadly construed, thus encompassing situations where both direct contact between the panel-forming surface (which may be, for example, a smooth floor) and the bulkheads and aperture extensions, as well as indirect support (where, for example, a release liner may be placed over the panel-forming surface prior to arrangement of the bulkheads or aperture extensions) are contemplated. The bulkheads include a first group and a second group, where the first group is arranged into the shape of the panel to be formed, while the second group is disposed substantially within a shape formed by the first group. In the present context, the term “substantially” is utilized to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. As such, it refers to an arrangement of elements or features that, while in theory would be expected to exhibit exact correspondence or behavior, may, in practice embody something slightly less than exact. The term also represents the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.
Upon formation of a panel (such as by pouring an uncured panel-forming material, for example, concrete into the dimensions bounded by the two bulkhead groups), the space that is substantially surrounded by the second group defines an aperture in the panel. The aperture extension includes a bulkhead-engaging portion configured to contact the bulkhead; and a recess portion extending laterally from the bulkhead-engaging portion such that upon formation of the panel, a pattern becomes defined therein by surfaces on the aperture extension that are configured to face the panel, the recess portion defining a height dimension and an elongate lateral dimension extending from a proximal end to a distal end, the proximal end disposed closer to the bulkhead-engaging portion than the distal end, the elongate lateral dimension being substantially greater than the height dimension. In the present context, the aspect ratio of the aperture extension is defined as the ratio of the height of the portion of the extension that faces the formed panel to the lateral (horizontal) extension of the portion of the extension that faces the formed panel. Thus, in contrast to conventional panel-forming systems that merely include a chamfer designed to create a bevelled recess near a panel edge that is defined by an aspect ratio of unity or thereabouts, the device of the present invention contemplates myriad recess transition possibilities, including long, gradual recesses and multifaceted recesses, which taken alone or together provide the panel designer with numerous functional and aesthetic options.
Optionally, the recess portion further comprises at least one chamfer disposed at the terminus of at least one of the proximal and distal ends. A base clip disposed along at least a part of the recess portion may also be included. In one configuration, the base clip is integrally formed with the recess portion. Preferably, the recess portion is defined by an aspect ratio of less than 0.5, and more preferably less than 0.2, and even more preferably less than 0.1, such that it is considerably wider than it is tall. In another option, the bulkhead-engaging portion and the recess portion together define a unitary (one-piece) construction, while in another the bulkhead-engaging portion and the recess portion are formed as discrete components. In configurations where the bulkhead-engaging portion and the recess portion are formed as discrete components, at least one end of the bulkhead-engaging portion terminates in a chamfer. In addition, the surface of the recess portion that is configured to face the panel can be multi-faceted to define complementary multifaceted surfaces on the portion of the panel adjacent the recess portion. In yet another option, an extension cap is included to engage the distal end of the recess portion. This extension cap effectively widens the lateral dimension of the aperture extension. The upper surface of the extension cap and the recess panel are preferably made to form a substantially seam-free planar surface, thus resulting in fewer seams on the formed panel. In addition, the extension cap comprises one or more notches that define a line of weakness therein to facilitate removal of at least a portion of the extension cap. These notches provide a convenient breakaway point such that the user can select a predetermined lateral length from which to work. In one form, the notches are spaced substantially equidistant from one another. In addition, the extension cap can include a base clip portion disposed adjacent its distal end. This base clip can be used to secure the aperture extension to the panel-forming surface. The base clip may further include frictional engaging members to attach the extension clip to, among other things, the recess portion of the aperture extension. A notch may be disposed between the base clip and the remainder of the extension cap, and as before, define a line of weakness therein to facilitate removal of the base clip. At least one frictional engagement member may be disposed between the extension cap and the recess portion to effect a secure connection between them. All of the aforementioned frictional engagement members may be made up of a plurality of prismatic members. A seal may be disposed substantially at a distal end of the extension cap. In one form, this seal can create a knife-edge along the panel-forming surface so that gaps between the extension cap and the panel-forming surface are eliminated or minimized. This inhibits the undesirable seepage of uncured panel-forming material (such as concrete, for example) into the underside of the aperture extension.
In another option, the aperture extension includes at least one stiffening rib disposed along the recess portion. As with the extension cap, a base clip may be configured to frictionally engage one or more of the stiffening ribs. This can help secure the recess portion to other structure, such as the panel-forming surface. Also as before, the frictional engagement between the base clip and the stiffening rib may comprise a plurality of prismatic members. These are disposed on co
Dodson Gordon
Takagi Kyozaburo
Dinsmore & Shohl LLP
Fukuvi USA, Inc.
Heckenberg Donald
Mackey James P.
LandOfFree
Extensions for apertures in panels does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Extensions for apertures in panels, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Extensions for apertures in panels will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3307396