Multicellular living organisms and unmodified parts thereof and – Plant – seedling – plant seed – or plant part – per se – Higher plant – seedling – plant seed – or plant part
Reexamination Certificate
1998-06-16
2002-08-27
Nelson, Amy J. (Department: 1638)
Multicellular living organisms and unmodified parts thereof and
Plant, seedling, plant seed, or plant part, per se
Higher plant, seedling, plant seed, or plant part
C435S005000, C435S069100, C435S440000, C435S468000, C435S410000, C435S417000, C435S419000, C435S320100, C536S023100, C536S023200, C536S023600, C536S023700, C800S278000, C800S284000, C800S290000, C800S295000, C800S317200
Reexamination Certificate
active
06441277
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to the expression of fructose 1,6 bisphosphate aldolase (FDA) in transgenic plants to increase or improve plant growth and development, yield, vigor, stress tolerance, carbon allocation and storage into various storage pools, and distribution of starch. Transgenic plants expressing FDA have increased carbon assimilation, export and storage in plant source and sink organs, which results in growth, yield and quality improvements in crop plants.
BACKGROUND OF THE INVENTION
Recent advances in genetic engineering have provided the prerequisite tools to transform plants to contain alien (often referred to as “heterologous”) or improved endogenous genes. These genes can lead either to an improvement of an already existing pathway in plant tissues or to an introduction of a novel pathway to modify product levels, increase metabolic efficiency, and or save on energy cost to the cell. It is presently possible to produce plants with unique physiological and biochemical traits and characteristics of high agronomic and crop processing importance. Traits that play an essential role in plant growth and development, crop yield potential and stability, and crop quality and composition include enhanced carbon assimilation, efficient carbon storage, and increased carbon export and partitioning.
Atmospheric carbon fixation (photosynthesis) by plants represents the major source of energy to support processes in all living organisms. The primary sites of photosynthetic activity, generally referred to as “source organs”, are mature leaves and, to a lesser extent, green stems. The major carbon products of source leaves are starch, which represents the transitory storage form of carbohydrate in the chloroplast, and sucrose, which represents the predominant form of carbon transport in higher plants. Other plant parts named “sink organs” (e.g., roots, fruit, flowers, seeds, tubers, and bulbs) are generally not autotrophic and depend on import of sucrose or other major translocatable carbohydrates for their growth and development. The storage sinks deposit the imported metabolites as sucrose and other oligosaccharides, starch and other polysaccharides, proteins, and triglycerides.
In leaves, the primary products of the Calvin Cycle (the biochemical pathway leading to carbon assimilation) are glyceraldehyde 3-phosphate (G3P) and dihydroxyacetone phosphate (DHAP), also known as triose phosphates (triose-P). The condensation of G3P and DHAP into fructose 1,6 bisphosphate (FBP) is catalyzed reversibly by the enzyme fructose 1,6 bisphosphate aldolase (FDA), and various isozymes are known. The acidic isoenzyme appears to be chloroplastic and comprises about 85% of the total leaf aldolase activity. The basic isoenzyme is cytosolic. Both isoenzymes appear to be encoded by the nuclear genome and are encoded by different genes (Lebherz et al., 1984).
In the leaf, the chloroplast FDA is an essential enzyme in the Calvin Cycle, where its activity generates metabolites for starch biosynthesis. Removal of more than 40% of the plastidic aldolase enzymatic activity by antisense technology reduced leaf starch accumulation as well as soluble proteins and chlorophyll levels but also reduced plant growth and root formation (Sonnewald et al., 1994). In contrast, the cytosolic FDA is part of the sucrose biosynthetic pathway where it catalyzes the reaction of FBP production. Moreover, cytosolic FDA is also a key enzyme in the glycolytic and gluconeogenesis pathways in both source and sink plant tissues.
In the potato industry, production of higher starch and uniform solids tubers is highly desirable and valuable. The current potato varieties that are used for french fry production, such as Russet Burbank and Shepody, suffer from a non-uniform deposition of solids between the tuber pith (inner core) and the cortex (outer core). French fry strips that are taken from pith tissue are higher in water content when compared to outer cortex french fry strips; cortex tissue typically displays a solids level of twenty-four percent whereas pith tissue typically displays a solids level of seventeen percent. Consequently, in the french fry production process, the pith strips need to be blanched, dried, and par-fried for longer times to eliminate the excess water. Adequate processing of the pith fries results in the over-cooking of fries from the high solids cortex. The blanching, drying, and par frying times of the french fry processor need to be adjusted accordingly to accommodate the low solids pith strips and the high solids cortex strips. A higher solids potato with a more uniform distribution of starch from pith to cortex would allow for a more uniform finished fry product, with higher plant throughput and cost savings due to reduced blanch, dry and par-fry times.
Although various fructose 1,6 bisphosphate aldolases have been previously characterized, it has been discovered that overexpression of the enzyme in a transgenic plant provides advantageous results in the plant such as increasing the assimilation, export and storage of carbon, increasing the production of oils and/or proteins in the plant and improving tuber solids uniformity.
SUMMARY OF THE INVENTION
The present invention provides structural DNA constructs that encode a fructose 1,6 bisphosphate aldolase (FDA) enzyme and that are useful in increasing carbon assimilation, export, and storage in plants.
In accomplishing the foregoing, there is provided, in accordance with one aspect of the present invention, a method of producing genetically transformed plants that have elevated carbon assimilation, storage, export, and improved solids uniformity comprising the steps of:
(a) Inserting into the genome of a plant a recombinant, double-stranded DNA molecule comprising
(i) a promoter that functions in the cells of a target plant tissue,
(ii) a structural DNA sequence that causes the production of an RNA sequence that encodes a fructose 1,6 bisphosphate aldolase enzyme,
(iii) a 3′ non-translated DNA sequence that functions in plant cells to cause transcriptional termination and the addition of polyadenylated nucleotides to the 3′ end of the RNA sequence;
(b) obtaining transformed plant cells; and
(c) regenerating from transformed plant cells genetically transformed plants that have elevated FDA activity.
In another aspect of the present invention there is provided a recombinant, double-stranded DNA molecule comprising in sequence
(i) a promoter that functions in the cells of a target plant tissue,
(ii) a structural DNA sequence that causes the production of an RNA sequence that encodes a fructose 1,6 bisphosphate aldolase enzyme,
(iii) a 3′ non-translated DNA sequence that functions in plant cells to cause transcriptional termination and the addition of polyadenylated nucleotides to the 3′ end of the RNA sequence.
In a further aspect of the present invention, the structural DNA sequence that causes the production of an RNA sequence that encodes a fructose 1,6 bisphosphate aldolase enzyme is coupled with a chloroplast transit peptide to facilitate transport of the enzyme to the plastid.
In accordance with the present invention, an improved means for increasing carbon assimilation, storage and export in the source tissues of various plants is provided. Further means of improved carbon accumulation in sinks (such as roots, tubers, seeds, stems, and bulbs) are provided, thus increasing the size of various sinks (larger roots, tubers, etc.) and subsequently increasing yield and crop productivity. The increased carbon availability to these sinks would also improve composition and use efficiency in the sink (oil, protein, starch and/or sucrose production, and/or solids uniformity).
Various advantages may be achieved by the aims of the present invention, including:
First, increasing the expression of the FDA enzyme in the chloroplast would increase the flow of carbon through the Calvin Cycle and increase atmospheric carbon assimilation during early photoperiod. This would result in an increase in photosynthetic efficie
Barry Gerard F.
Cheikh Nordine
Kishore Ganesh M.
Howrey Simon Arnold & White , LLP
McBride Thomas P.
Monsanto Technology LLC
Nelson Amy J.
Zaghmout O. M. F.
LandOfFree
Expression of fructose 1,6 bisphosphate aldolase in... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Expression of fructose 1,6 bisphosphate aldolase in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Expression of fructose 1,6 bisphosphate aldolase in... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2885971