Chemistry: natural resins or derivatives; peptides or proteins; – Proteins – i.e. – more than 100 amino acid residues – Lymphokines – e.g. – interferons – interlukins – etc.
Reexamination Certificate
1995-06-05
2002-05-07
Kunz, Gary L. (Department: 1647)
Chemistry: natural resins or derivatives; peptides or proteins;
Proteins, i.e., more than 100 amino acid residues
Lymphokines, e.g., interferons, interlukins, etc.
C424S085200, C435S069520
Reexamination Certificate
active
06384194
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to cDNA encoding human interleukin-3 (IL-3) and its use, inter alia, in cloning and expression in various organisms, including microorganisms, in particular yeasts, bacteria and fungi, tissue culture cells and transgenic animals and plants. The instant invention also relates to improved methods for the production and purification of hIL-3 and muteins thereof.
BACKGROUND OF THE INVENTION
Hemopoiesis involves the active process of proliferation and differentiation of pluripotent progenitor cells into all types of mature blood cells and some specialized tissue cells. Production of functional blood cells is regulated by specific proteins, the hemopoietic growth factors (HGFs). Some of the HGFs control maturation of a specific maturation lineage, whereas others stimulate proliferation and differentiation of progenitors along multiple pathways. Much of our knowledge of the hemopoietic differentiation process has been obtained from mouse studies in vitro and in vivo, using purified growth factors. The murine growth factor interleukin-3 (mIL-3), also termed multi-CSF, mast cell growth factor, stem cell activating factor or several other designations, stimulates the proliferation of developmentally early, multipotent cells (CFU-S) as detected by the spleen colony assay, resulting in the production of progenitor cells along the erythroid, megakaryocyte, granulocyte/macrophage, osteoblast and several other lineages. Furthermore, mIL-3 has been implicated in replication of pluripotent stem cells, probably in synergism with other HGFs.
In recent years, several groups have succeeded in cloning mIL-3 cDNA. No results have been reported so far of identifying homologous sequences in human DNA using mIL-3 DNA as a probe. Presumably, the human gene has diverged extensively from the mIL-3 gene or has lost its function during primate evolution. However, human leukocytes were found to produce an HGF(s) which can replace M-GSF in supporting the proliferation of murine CFU-S. Thus, the existence of a human HGF was postulated, which shares biological properties with mIL-3 and therefore could be the human homolog.
Recently, DNA sequences encoding hIL-3 have been identified by several investigators. For instance, using as probe a cDNA coding for gibbon IL-3, the human IL-3 gene was isolated (Yang et al., 1986). The sequence of the exons of the human gene was disclosed in the cited paper as well as in patent application WO 88/00598 (published Jan. 28, 1988). However, as known to those skilled in the art, the intron-containing genomic sequence cannot be used for synthesis of hIL-3 in microorganisms. Rather, the coding sequence used should be a continuous coding sequence as in a cDNA. A cDNA sequence encoding human IL-3 is also disclosed in WW 88/00598. Following another route, Dorssers et al. (1987) also isolated a cDNA coding for human IL-3.
Patent application No. WO88/05469 discloses the isolation of a cDNA encoding hIL-3 using a synthetic DNA derived from the genomic sequence described by Yang et al. (1986) as a probe. The disclosed cDNA sequence, however, lacks two amino acids, nos. 44 and 45 or 45 and 46. The amino acid bordering either deletion is a GAC encoded Asp. Nonetheless, the culture supernatant of a yeast transformant carrying this cDNA sequence in an expression cassette, encoding mature hIL-3 fused to an N-terminal “flag” of 8 amino acids, shows IL-3 activity in a human bone marrow proliferation assay. This finding indicates that the absence of the aforementioned two amino acids and the N-terminal extension of 8 amino acids has no deleterious effect on the biological activity of the protein.
Finally, EP 282.185 also discloses the isolation of a hIL-3 cDNA sequence using as probe a synthetic DNA derived from the genomic sequence described by Yang et al. (1986) and describes the construction of a completely synthetic hIL-3 coding sequence as well as the construction of two muteins, Ile
2
and Leu
131
. There is no mention of biological activity. Furthermore, it was apparently assumed that hIL-3 contains 132 amino acids, starting at the N-terminus with Pro
1
-Met
2
-, whereas it is generally accepted that hIL-3 is 133 amino acids long and has as the N-terminus Ala
1
-Pro
2
-Met
3
.
It is noteworthy that Yang et al. (1986) find a Ser residue at position 8 of the mature hIL-3, whereas all other references indicate the presence of a Pro at this position.
BPV-1 or the 69% subgenomic fragment (BamHI-HindIII) has been used for the expression cloning of a variety of genes in different cloning systems. EP-A-198386 describes the expression of gamma-interferon in C127 mouse cells. In EP-A-105141 the use of the BPV vector is described for the expression of hepatitis B surface antigen (HBsAg) in vertebrate cell lines e.g. NIH 3T3, LTK
−
mouse fibroblasts and African green monkey kidney cells. The general idea of using BPV-1 is disclosed in U.S. Pat. No. 4,419,446.
BPV-1 is one of at least six bovine papillomaviruses and is associated with cutaneous fibropapillomas in cattle. These viruses can readily transform a variety of rodent cells in culture. The molecularly cloned bovine papillomavirus DNA as well as a cloned 69% subgenomic fragment are efficient in inducing transformed foci. Transformed cells contain multiple copies (10 to 120 per cell) of the viral DNA as unintegrated molecules (Law et al., 1981). The genetics of bovine papillomavirus type I have been extensively studied (for a review see Lambert et al., 1981). The BPV-1 genome is a circular, 7946 base-pair, double-stranded DNA molecule. The transcription is complicated because of the presence of multiple promoters, splice sites, and differential production of RNA species. The activities of some of the promoters are under tight control of transcriptional enhancers.
The so-called E2 (=early) ORF is very important in this respect. The full-length E2 ORF encodes a transactivating protein (E2-ta) which can stimulate transcription of the early genes.
This protein consists of two conserved domains, the amino terminal domain (which has transactivating activity) and the carboxy-terminal domain (which has both DNA-binding and dimer formation activities). The E2 ORF encodes a second regulatory protein, the E2 transcriptional repressor (E2-tr), which is an amino-terminally truncated form of the E2-ta protein. E2-tr is encoded by another mRNA, whereby the translation initiation codon is an E2 ORF internal ATG-codon.
The present invention discloses cell lines not previously employed in hIL-3 production as well as mutations of the E2 ORF.
The clinical utility of hIL-3 is not only dependent on its inherent characteristics but also on its availability and the lack of contaminants. The prior art relating to the purification of murine, gibbon and human IL-3 is briefly reviewed here.
The mature murine T-cell enzyme marker 20a-hydroxy-steroid dehydrogenase (20aSDH) was found to be inducible in vitro. The factor responsible for this was partially purified from splenic lymphocytes by Ihle et al. (1981). It was distinct from other known lymphokines in both its biochemical and functional properties. Ihle et al. (1981) proposed the term interleukin-3 (“IL-3”) for this factor. The purification by Sephadex G-100 and DEAE cellulose chromatography resulted in a 9000-fold purification, yet the final preparation still contained multiple proteins.
An improved purification procedure was presented by Ihle et al. (1982), wherein WEHI-3 cells which constitutively produce IL-3, were used. Here, through the extension of the earlier procedure with hydroxylappatite and reverse-phase high performance liquid chromatography, the final product could be obtained 1,800,000-fold purified (their Table I). This product was claimed to be homogeneous.
Miyajimi et al. (1987) used the silkworm
Bombyx mori
and an insect baculovirus vector for high-level expression and secretion of murine IL-3. Purification of IL-3 from tissue culture medium was carried out by sequential passage through DEAE-Sephadex, ACA 54 and C8 reverse-phase col
Dorssers Lambertus Christiaan Johannes
Persoon Maria Ludovicus Nicolaas
Van Leen Robert William
Vos Yvonne Johanna
Wagemaker Gerard
DSM N.V.
Kunz Gary L.
Morrison & Foerster / LLP
LandOfFree
Expression and purification of human interleukin-3 and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Expression and purification of human interleukin-3 and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Expression and purification of human interleukin-3 and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2873473