Explosives detection using differential ion mobility...

Radiant energy – Ionic separation or analysis – With sample supply means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S281000

Reexamination Certificate

active

07129482

ABSTRACT:
System for control of ion species behavior in a time-varying filter field of an ion mobility-based spectrometer to improve species identification for explosives detection.

REFERENCES:
patent: 2615135 (1952-10-01), Glenn, Jr.
patent: 2818507 (1957-12-01), Britten
patent: 2919348 (1959-12-01), Bierman
patent: 3511986 (1970-05-01), Llewellyn
patent: 3621240 (1971-11-01), Cohen et al.
patent: 3931589 (1976-01-01), Aisenberg et al.
patent: 4019989 (1977-04-01), Hazewindus et al.
patent: 4025818 (1977-05-01), Giguere et al.
patent: 4136280 (1979-01-01), Hunt et al.
patent: 4201921 (1980-05-01), McCorkle
patent: 4315153 (1982-02-01), Vahrenkamp
patent: 4517462 (1985-05-01), Boyer et al.
patent: 4761545 (1988-08-01), Marshall et al.
patent: 5218203 (1993-06-01), Eisele et al.
patent: 5298745 (1994-03-01), Kernan et al.
patent: 5420424 (1995-05-01), Carnahan et al.
patent: 5455417 (1995-10-01), Sacristan
patent: 5479815 (1996-01-01), White et al.
patent: 5508204 (1996-04-01), Norman
patent: 5536939 (1996-07-01), Freidhoff et al.
patent: 5654544 (1997-08-01), Dresch
patent: 5723861 (1998-03-01), Carnahan et al.
patent: 5736739 (1998-04-01), Uber et al.
patent: 5763876 (1998-06-01), Perinarides et al.
patent: 5789745 (1998-08-01), Martin et al.
patent: 5801379 (1998-09-01), Kouznetsov
patent: 5834771 (1998-11-01), Yoon et al.
patent: 5838003 (1998-11-01), Bertsch et al.
patent: 5869344 (1999-02-01), Linforth et al.
patent: 5965882 (1999-10-01), Megerle et al.
patent: 6066848 (2000-05-01), Kassel et al.
patent: 6107624 (2000-08-01), Doring et al.
patent: 6124592 (2000-09-01), Spangler
patent: 6180414 (2001-01-01), Katzman
patent: 6239428 (2001-05-01), Kunz
patent: 6323482 (2001-11-01), Clemmer et al.
patent: 6495823 (2002-12-01), Miller et al.
patent: 6504149 (2003-01-01), Guevremont et al.
patent: 6512224 (2003-01-01), Miller et al.
patent: 6540691 (2003-04-01), Philips
patent: 6621077 (2003-09-01), Guevremont et al.
patent: 6639212 (2003-10-01), Guevremont
patent: 6653627 (2003-11-01), Guevremont
patent: 6690004 (2004-02-01), Miller et al.
patent: 6703609 (2004-03-01), Guevremont
patent: 6713758 (2004-03-01), Guevremont
patent: 6753522 (2004-06-01), Guevremont
patent: 6770875 (2004-08-01), Guevremont
patent: 6774360 (2004-08-01), Guevremont
patent: 6787765 (2004-09-01), Guevremont
patent: 6799355 (2004-10-01), Guevremont
patent: 6806466 (2004-10-01), Guevremont
patent: 2001/0030285 (2001-10-01), Miller et al.
patent: 2002/0070338 (2002-06-01), Loboda
patent: 2002/0134932 (2002-09-01), Guevremont et al.
patent: 2003/0020012 (2003-01-01), Guevremont et al.
patent: 2003/0038235 (2003-02-01), Guevremont et al.
patent: 2003/0052263 (2003-03-01), Kaufman et al.
patent: 2003/0089847 (2003-05-01), Guevremont et al.
patent: 2003/0132380 (2003-07-01), Miller et al.
patent: 2004/0094704 (2004-05-01), Miller et al.
patent: 966583 (1982-10-01), None
patent: 1337934 (1987-09-01), None
patent: 1627984 (1988-07-01), None
patent: 1412447 (1998-06-01), None
patent: 1405489 (1998-10-01), None
patent: 1485808 (1998-10-01), None
patent: WO 97/38302 (1997-10-01), None
patent: WO 00/08454 (2000-02-01), None
patent: WO 00/08455 (2000-02-01), None
patent: WO 00/08456 (2000-02-01), None
patent: WO 00/08457 (2000-02-01), None
patent: WO 01/08197 (2001-02-01), None
patent: WO 01/22049 (2001-03-01), None
patent: WO 01/35441 (2001-05-01), None
patent: WO-01/69217 (2001-09-01), None
patent: WO 01/69220 (2001-09-01), None
patent: WO 01/69647 (2001-09-01), None
patent: WO 02/071053 (2002-09-01), None
patent: WO 02/083276 (2002-10-01), None
patent: WO 03/005016 (2003-01-01), None
patent: WO 03/015120 (2003-02-01), None
“A Micromachined Field Driven Radio Frequency-Ion Mobility Spectrometer for Trace Level Chemical Detection,” A Draper Laboratory Proposal Against the “Advanced Cross-Enterprise Technology Development for NASA Missions,” Solicitation, NASA NRA 99-OSS-05.
Barnett, D.A. et al., “Isotope Separation Using High-Field Asymmetric Waveform Ion Mobility Spectrometry,” Nuclear Instruments & Methods in Physics Research (2000), pp. 179-185, 450(1).
Basile, F., “A Gas Sample Pre-concentration Device Based on Solid Phase Microextraction (SPME) and Temperature Programmed Desorption (TPD),” Instrumentation Sci. Tech., (2003), pp. 155-164, 31(2).
Buryakov, I.A. et al., “A New Method of Separation of Multi-Atomic Ions by Mobility at Atmospheric Pressure Using a High-Frequency Amplitude-Asymmetric Strong Electric Field,” International Journal of Mass Spectometry and Ion Processes (1993), pp. 143-148, 128.
Buryakov, I.A. et al., “Drift Spectometer for the Control of Amine Traces in the Atmosphere,” J. Analytical Chem., (1993), pp. 156-165, 48(1).
Buryakov, I.A. et al., “Separation Ions According to Mobility in a Strong ac electric Field,” Sov. Tech. Phs. Lett. (1991), pp. 446-447, 17(6).
Buryakov, I.A. et al., Device and Method For Gas Electrophoresis, Chemical Analysis fo Environment, edit. Prof. V.V. Malakhov, Novosibirsk; Nauka (1991), pp. 113-127.
Carnahan, B. et al., “Field Ion Spectrometry—A New Analytical Technology for Trace Gas Analysis,” ISA, (1996), pp. 87-96, 51(1).
Carnahan, B. et al., “Field Ion Spectrometry—A New Technology for Cocaine and Heroin Detection,” SPIE, (1997), pp. 106-119, 2937.
Guevremont, R. and Purves, R., “High Field Asymmetric Waveform Ion Mobility Spectometry-Mass Spectrometry: An Investigation of Leucine Enkephalin Ions Produced by Electrospray Ionization,” J. Am. Soc. Mass. Spectrom, (1999), pp. 492-501, 10.
Guevremont, R. et al., “Calculation of Ion Mobilities From Electrospray Ionization High Field Asymmetric Waveform Ion Mobility Spectrometry Mass Spectrometry,” Journal of Chemical Physics, (2001), pp. 10270-10277, 114(23).
Guevremont, R. et al., “Atmospheric Pressure In Focusing in a High-Field Asymmetric Waveform Ion Mobility Spectrometer,” Review of Scientific Instruments, (1999), pp. 1370-1383, 70(2).
Handy, R. et al., “Determination of nanomlar levels of perchlorate in water by ESI-FAIMS-MS,” JAAS (2000), pp. 907-911, 15.
Krylov, E.V., “A Method of Reducing Diffusion Losses in a Drift Spectrometer,” Technical Physics, (1999), pp. 113-116, 4d(1).
Krylov, E.V., “Pulses of Special Shapes Formed on a Capacitive Load,” Instruments and Experimental Techniques, (1997), pp. 628, 40(5).
Miller, R.A. et al., “A MEMS Radio-Frequency Ion Mobility Spectrometer for Chemical Agent Detection,” (Jun. 2000) Proceedings of the 2000 Solid State Sensors and Actuators Workshop, Hilton Head, SC.
Miller, R.A. et al., “A Novel Micromachined High-Field Asymmetric Waveform-Ion Mobility Spectrometer,” Sensors and Actuators B, (2000) pp. 300-306, B67 (3).
Phillips, M., “Method for the Collection and Assay of Volatile Organic Compounds in Breath,” Analytical Biochemistry, (1997), pp. 272-278, 247.
Pilzecker, P. et al., “On-Site Investigations of Gas Insulated Substations Using Ion Mobility Spectrometry for Remote Sensing of SF6 Decomposition,” IEEE, (2000), pp. 400-403.
Riegner, D.E. et al., “Qualitative Evaluation of Field Ion Spectrometry for Chemical Warfare Agent Detection,” Proceedings of the ASMS Conference on Mass Spectrometry and Allied Topics (Jun. 1997), pp. 473A-473B.
Schneider, A. et al., “High Sensitivity GC-FIS for Simultaneous Detection of Chemical Warfare Agents,” Mine Safety Appliances Co., Pittsburgh, PA, USA, (2000), AT-Process, pp. 124-136, 5(3,4), CODEN: APJCFR ISSN: 1077-419X.
Shute, L.A. et al., “Curie-point Pyrolysis Mass Spectrometry Applied to Characterization and Identification of Selected Bacillus Species,” J. General Micro., (JGMIAN) (1984), pp. 343-355, 130(2).
Eiceman, et al., “Miniature radio-frequency mobility analyzer as a gas chromatographic detector for oxygen-containing volatile organic compounds, pheromones and other insect attractants,” J.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Explosives detection using differential ion mobility... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Explosives detection using differential ion mobility..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Explosives detection using differential ion mobility... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3711316

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.