Receptacles – Freight containers
Reexamination Certificate
1998-09-25
2001-05-29
Sewell, Paul T. (Department: 3728)
Receptacles
Freight containers
C220S009100, C109S015000, C206S577000
Reexamination Certificate
active
06237793
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to cargo containers, and more particularly concerns a cargo container for aircraft or seagoing vessels that has flexible, explosion resistant side walls and a flexible, explosion resistant door that are capable of expanding to substantially contain an explosive blast within the container.
2. Description of Related Art
Conventional cargo containers for aircraft and seagoing vessels are typically not constructed to resist and contain explosive blasts, making such containers vulnerable to deliberate bombings and accidental explosions of materials being transported in such containers. Cargo containers for seagoing vessels can be made of a heavier, sturdier construction in order to withstand internal explosions, but it is typically not practical or economical to use such heavy cargo containers in aircraft, for which weight reduction is an important consideration.
In one approach to making cargo containers explosion resistant, the cargo container is hardened, being formed of flat Kevlar and resin panels joined together along their peripheries. The corners are reinforced by making them of a greater thickness, and the construction provides many layers to withstand an explosion.
Another approach to providing a explosion resistant cargo container provides a strong lightweight double-walled reinforced vessel having an intermediate single woven member formed from Kevlar, graphite or fiberglass, and disposed between spaced apart first and second walls. The intermediate woven member comprises a plurality of longitudinally extending cylindrical members positioned parallel to each other and a plurality of generally parallel fibers woven about the cylindrical members and extending perpendicularly to the cylindrical members. The woven layer is bonded between the first inner wall and the second outer wall with resinous materials.
Another collapsible storage container for the transportation and storage of goods which otherwise could not be stably stacked is formed of all Kevlar or other materials. The container is formed of four walls hingedly connected together, the walls being formed by frames made from welded sections of rectangular hollow section steel with infill panels of a mesh such as Kevlar. A roof member is formed from a frame and a mesh infill panel in the same manner as each of the walls, and L-shaped brackets on the walls captively engage a pallet underneath the container.
Another known aircraft cargo container that is capable of expanding to facilitate containment of an explosive blast is formed of panels fastened together at the corners to form a container capable of expanding to facilitate containment of an explosive blast. The top and side panels are formed of knitted aramid material, and are joined to each other at edges and corners. The knitted aramid fibers are sandwiched between layers of foam material sandwiched between an inner skin comprising a fiberglass layer bonded to a sheet of PVF, PVC, or polyurethane, and an outer aluminum skin. The inner skin is a two-layer material of open weave glass fiber impregnated with a resin and bonded to a thin sheet of polyvinyl fluoride or the like. To enable the edges of the panel to be connected to other panels or the door frames of the container and to provide a secure anchorage for the Kevlar sheets, the outer aluminum skin is formed around its edges with one flange being securely connected to another similar flange of the corner joint extrusion by uniformly spaced rivets or bolts which also penetrate through all the other layers of the panel.
Another known explosion resistant cargo container is formed from a structural sandwich panel made of many layers of Kevlar. The sandwich panel is made of rigid structural face sheets and a hybrid core of rigid rod members which pierce and cross through layers of soft, dry, energy-absorbing material. The soft energy-absorbing material of the core can be made of several dry layers of woven ballistic fabric from aramid fibers such as Kevlar. Graphite epoxy yarns are also sewn through the Kevlar fabric plies and the epoxy resin cured to rigidize the sewn cross-through members. The edges of the material were sewed and impregnated along the edges with epoxy resin for mounting in a frame.
It has however been found that while explosion resistant panels of various types can typically be made strong enough to contain an explosion, the seams along the frame where the panels are connected are typically the weakest point of the container in an explosion. There thus still exists a need a blast resistant cargo container with flexible, explosion resistant side walls for substantially containing the force of an explosion within the cargo container, that is relatively lightweight, with reinforcement of the seams along the frame where the panels are connected that are otherwise commonly the weakest point of the container during an explosion. The present invention meets these needs.
SUMMARY OF THE INVENTION
Briefly, and in general terms, the present invention provides for an improved, relatively lightweight explosion resistant cargo container having flexible, explosion resistant side walls for substantially containing the force of an explosion within the cargo container, the explosion resistant side walls having a unique edge assembly for reinforcing the seams of the explosion resistant side walls along the frame that are otherwise commonly the weakest point of the container during an explosion. In one preferred embodiment, the explosion resistant cargo container is made of a plurality of panels that are assembled with fasteners, and can be disassembled for shipping and repair. The panel construction allows for a simple repair, since a damaged panel can be replaced with a new panel by detaching the panel to be replaced, and attaching a replacement panel to the container. All of the panels are connected together so that a continuous explosion resistant container is formed on all sides of the container, including the door.
The invention accordingly provides for an explosion resistant cargo container suitable for aircraft or seagoing vessels for containing the effects of a bomb explosion within the cargo container, comprising a frame assembly, and a plurality of side walls including a bottom explosion resistant panel, a plurality of explosion resistant side walls, and an explosion resistant flexible door having two side edges and a bottom edge, the side panels and flexible door each being formed of one or more explosion resistant sheets of explosion resistant, flexible, high tensile strength material, the explosion resistant sheets having edges that are each wrapped around and secured to a mounting strip.
The frame preferably comprises a main section with two vertical front door post support members projecting from the bottom panel, a rear vertical side post support member projecting from the bottom panel, top transverse connector members connecting the vertical projecting support members, and flat gusset plates are provided for interconnecting at least some of the support members and transverse connector members of the support frame. The frame of the cargo container further typically comprises an angled projecting section, and the frame is comprised of a plurality of vertical support members and side transverse connector members.
In one presently preferred embodiment, each of the side walls are formed of individual explosion resistant side panels provided on the frame, along with a flexible door, with the edges of the explosion resistant sheets being connected by the unique edge assembly construction. While all of the panels are connected together so that a continuous explosion resistant container encompassing all sides and door of the container, this type of panel construction allows a damaged panel to be simply replaced with a new panel.
In another presently preferred embodiment, the frame is wrapped horizontally with one or more explosion resistant sheets to form a plurality of the explosion resistant side panels, and is wrapp
Fingerhut Richard L.
Fingerhut Solomon M.
Arnold Troy
Century Aero Products International, Inc.
Fulwider Patton Lee & Utecht LLP
Sewell Paul T.
LandOfFree
Explosion resistant aircraft cargo container does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Explosion resistant aircraft cargo container, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Explosion resistant aircraft cargo container will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2479943