Refrigeration – Intermediate fluid container transferring heat to heat... – Flow line connected transfer fluid supply and heat exchanger
Reexamination Certificate
2001-10-23
2002-11-05
Capossela, Ronald (Department: 3744)
Refrigeration
Intermediate fluid container transferring heat to heat...
Flow line connected transfer fluid supply and heat exchanger
C062S376000, C062S457400
Reexamination Certificate
active
06474093
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates in general to cooling units using a plurality of elongated chill elements for rapidly chilling beverage containers and beverages retained therein, and in particular to self-contained closed-loop cooling units that use an array of elongated chill elements for rapidly chilling different sizes of closed beverage containers or the like or other objects of different sizes placed therein.
BACKGROUND OF THE INVENTION
Many beverages such as soda pop, juice, beer, wine and others are preferably consumed cold, ideally around 45° F. or even cooler, for many beverages, or slightly chilled, such as between 50° F. to 60° F., for certain wines. Ambient temperatures are typically warmer than this, so consumers typically cool the beverage by placing the beverage container and beverage in a refrigerator or a cooler full of ice, by adding ice directly to the beverage, or by placing the beverage container and beverage into a freezer for a short period of time. Cooling a beverage container and beverage within a refrigerator or cooler full of ice generally takes several hours, which is often more time than a consumer is willing to wait. Adding ice directly to a beverage often is not desired by the consumer. Placing a beverage container and beverage in a freezer hastens the cooling process, but this method has a host of problems associated with it. For example, a warm beverage container and beverage placed within a typical freezer still requires twenty minutes or more to cool them to the desired temperature, the beverage does not cool uniformly, and it often may freeze in whole or in part if left in the freezer too long.
In order to address these concerns, numerous efforts have been made and practical methods developed for rapidly chilling beverages stored within a beverage container. In general, the rapid cooling of products of various types has been known for very long time and has seen extensive use in industry for the last few decades, especially in connection with the rapid freezing of consumable food products sold in the frozen food section of most large grocery stores.
There are a number of patents directed to chilling food and beverages during processing in which the product to be chilled is passed by a conveyor or other similar transport apparatus through a cooling/freezing chamber wherein the temperature of the product is reduced. Examples of such systems and methods are disclosed in the following U.S. Patents:
U.S. Pat. Nos. 2,153,742, 3,238,736 3,427,820 4,127,008 4,157,650 4,367,630 4,739,623 5,218,826 5,551,251
However, these rapid cooling systems are generally very large and bulky. Further, due to their size and due to ventilation requirements, they have no real application in commercial establishments such as kitchens and restaurants or in institutional settings, such as college dormitories or nursing homes, much less inside of normal residential homes.
Yet another class of devices disclosed in some patents are dedicated to open loop cooling systems that cool containers for individual products such as an individual beverage can or bottle. At least the following U.S. patents disclose such devices:
U.S. Pat. Nos. 4,054,037 4,640,101 5,115,940 5,189,890 5,287,707 5,845,499 5,845,501
This class of individual cooling containers, however, involves the use of pressurized cryogenic gas or other refrigerant stored in a pressure vessel. When the pressurized refrigerant is released from the pressure vessel, the solid or liquid compressed refrigerant evaporates and thereby cools the beverage container or cooling apparatus. These devices have several disadvantages, such as the compressed refrigerant requires refilling after discharge and environmentally unfriendly refrigerants may be released to the atmosphere. Additionally, many inventions in this class require complex and expensive beverage container designs, and have the safety risk of bodily contact with the super-cold released cryogens.
There is also another class of devices disclosed in some patents that are dedicated to relatively small-size, closed-loop cooling systems, which could be used in commercial and residential environments, and that are capable of relatively rapidly cooling beverage containers or other objects of different sizes. Examples of U.S. patents that disclose concepts for utilizing the closed-loop refrigeration system for a beverage cooler include the following:
U.S. Pat. No. 6,035,660 discloses a refrigerated beverage mug having a closed-loop mechanical refrigeration system powered by an onboard power unit. The power unit includes a pressurized gas such as nitrogen or carbon dioxide that is released to the atmosphere as it powers the mechanical refrigeration system. The mechanical refrigeration system cycles refrigerant through a standard refrigeration cycle, which includes cycling the refrigerant through an evaporator section within the annular walls of the mug in a preferably spiral configuration.
U.S. Pat. No. 5,007,248 discloses a closed-loop, beverage-cooling device integrated into a vehicle air-conditioning system. The device is mounted into a vehicle and includes a refrigeration loop integrally connected with the vehicle air-conditioning system that circulates air-conditioning refrigerant through the device, and provides for evaporation of the refrigerant within the device, thereby cooling the device and the beverage retained therein.
U.S. Pat. No. 4,711,099 discloses a portable, closed-loop, beverage-cooling device specifically designed to cool a beverage stored within a standard 12-ounce can. The device uses a standard refrigeration cycle, preferably including refrigerant R-12, and it has an evaporator formed into a spiral coil that receives a 12-ounce can therein. The spiral coil evaporator has limited flexibility wherein one end may be rotated counterclockwise relative to the other, thereby expanding the coil for insertion or removal of a can.
Although a number of relatively small closed-loop cooling systems have been disclosed in the foregoing patents, the disclosed systems have several shortcomings. Specifically, there is still a need for a closed-loop rapid chilling system or unit that is able to cool containers of various shapes and sizes, that is portable, and that does not require the release of compressed gas or refrigerant to the atmosphere. No suitable system or cooling unit has been shown for quickly cooling a variety of closed beverage containers, such as 12-ounce beverage cans, 20-ounce beverage bottles, and 10-ounce juice bottles. Also, there is a need for a self-contained system or other portable system that can be readily used by consumers with very little training to quickly cool a variety of beverages retained in containers of different sizes.
It is therefore a first major object of the present invention to provide an essentially self-contained closed-loop cooling unit or system and method of rapidly and efficiently cooling closed beverage containers of varying sizes and shapes in commercial and/or residential environments. A related object is to provide a chill element cooling unit in a relatively small enclosure that is capable of receiving and holding different size containers to minimize the time required to chill the beverage therein to a desired temperature substantially below room temperature.
A second major object of the present invention is to provide a self-contained closed-loop chill element cooling unit or system that, while sophisticated internally, includes a simple-to-operate user's control panel and an essentially foolproof method for efficiently operating the cooling system, even though beverage containers (or objects) of different sizes are to be cooled inside the same overall enclosure. A related object is to provide the user with a clear and memorable visible indication and/or aural message that the cooling process is underway. Another object is to provide a system that can readily used in restaurant kitchens or in convenience stores.
A third major object of the present invention is to provide a self-contained clos
Fink Harvey S.
Mahany Thomas E.
Nolan Lawrence J.
Cantor & Colburn LLP
Capossela Ronald
Cosmo Tech Development, Inc.
Nolan Robert S.
LandOfFree
Expanding barrel system for cooling beverages does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Expanding barrel system for cooling beverages, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Expanding barrel system for cooling beverages will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2961672