Expandable shifting tool

Wells – Processes – Operating valve – closure – or changeable restrictor in a well

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C166S332400, C166S237000

Reexamination Certificate

active

06631768

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to tools used to complete subterranean wells. More particularly the present invention describes a shifting tool that can be used to actuate a downhole device.
2. Description of Related Art
Hydrocarbon fluids such as oil and natural gas are obtained from a subterranean geologic formation, referred to as a reservoir, by drilling a well that penetrates the hydrocarbon-bearing formation. Once a wellbore has been drilled, the well must be completed before hydrocarbons can be produced from the well. A completion involves the design, selection, and installation of equipment and materials in or around the wellbore for conveying, pumping, or controlling the production or injection of fluids.
While completing a well or performing subsequent remedial work, downhole tools requiring mechanical actuation are often used. The mechanical actuation can be used to perform numerous types of actions, for example, setting or releasing a downhole tool or reconfiguring a tool, such as opening or closing a valve.
Shifting tools of various kinds are commonly used in the industry and known to those skilled in the art. In general a shifting tool allows a force exerted on the shifting tool to be transferred to a separate downhole tool, thus providing the needed force to operate a mechanical actuation. A simple example of a shifting tool used to perform a mechanical actuation would be a tool having a set of jars and a contact device having a profile, the tool being used to shift a sliding sleeve into a different position. The contact device profile can be sized to pass through the well tubulars but to land on a reduced diameter profile of the sliding sleeve. The contact device and jars can be run into the well until the contact device profile lands on the sliding sleeve profile, force from the jars can then be transferred through the contact device onto the sliding sleeve profile, thus imparting force onto the sliding sleeve and moving the sliding sleeve to a different configuration.
A problem that is frequently confronted is the need to pass a shifting tool through well tubulars having reduced interior diameters. The simple example described above would not work below a tubular having a reduced diameter. One means that has been employed to overcome this problem has utilized expandable elements such as inflatable packers that can pass through the restricted diameter portion in a deflated position. Once in its desired location, the packer element can be inflated to a sufficient extent that it sets within the downhole tool and can then be used as a shifting tool to transfer force and enable the mechanical actuation of the downhole tool. Once the actuation has been completed, the inflatable element can be deflated and removed from the well. A drawback to the use of inflatable elements for this application is the possibility that the inflatable element will not deflate to the extent needed to pass through the restricted diameter upon removal from the well. If the expandable element does not deflate fully or if it is damaged in some way it may not be possible to remove the shifting tool from the well. If this happens the restricted diameter tubular may have to be removed from the well or even more extensive and costly recovery measures taken.
Another prior art means of engaging a downhole tool below a restriction involves utilizing an expanding mechanical shifting tool having slip elements located in the same plane. After the shifting tool has passed through the restriction, the tool can then be expanded to a larger diameter in an attempt to engage the downhole tool. This type of shifting tool has limitations on the extent of expansion that can be achieved.
Despite the use of prior art features, there remains a need for an improved expandable shifting tool.
SUMMARY OF THE INVENTION
One embodiment of the present invention is an expandable shifting tool comprising a housing having an outer surface and a plurality of radially extendable elements longitudinally separated from each other. The extendable elements are capable of moving between an extended position and a retracted position. The extendable elements can be at least partially contained within the housing and can be biased towards the extended position.
The extendable elements can comprise a first surface and a second surface, the first surface comprising an end of the extendable element that protrudes outside of the housing outer surface when in its extended position. When in the fully retracted position the first surface extends no further axially than the outer surface of the housing. The second surface of the extendable element extends no further axially than the housing outer surface when the extendable element is in its retracted position. The housing can comprise a wall having openings that enable the second surface of the extendable element to be located within the wall opening when the extendable element is in its retracted position. Each extendable element is capable of protruding beyond the housing outer surface a distance greater than 50 percent of the housing outer surface diameter length. Each extendable element can be located on the opposite side of the tool from an adjacent extendable element.
The housing may be cylindrical in shape, and the shifting tool can comprise a first and second end, having at least one passageway capable of communicating fluid between the first end and the second end within the shifting tool housing. The first end can comprise a connection that is capable of connecting to deployment device while the second end can comprise fluid outlet ports capable of discharging fluid from the passageways through the tool. The extendable elements and tool housing may comprise alignment elements that guide the extendable elements as they move between their retracted and extended positions. Each extendable element is capable of moving between the retracted and extended position independent of any other extendable element. The first surface of the extendable element can comprise a profile that is capable of engaging a mating profile. Each extendable element first surface profile can be different than the first surface profiles of the other extendable elements.
Another embodiment is a shifting tool comprising a generally cylindrical housing having a wall, an outer diameter, a first end and a second end. A plurality of anchor slips at least partially located within the housing and comprising an first surface and a second surface, are located in separate radial planes from each other and are capable of moving independently between a retracted position and an extended position. At least one longitudinal passageway is within the housing capable of providing hydraulic communication between the first end and the second end of the tool. The anchor slips in their extended position are each capable of extending beyond the outer diameter of the housing a distance in excess of 50 percent of the housing diameter.
The anchor slips can be biased towards the extended position and comprise alignment elements that guide the anchor slips as they move between their retracted and extended positions. In their retracted position the anchor slips do not extend beyond the outer diameter of the tool housing in some embodiments. The tool housing can comprise openings within its wall that are capable of containing a portion of the second surface of an anchor slip when the anchor slip is in its retracted position.
Yet another embodiment is a shifting tool comprising a generally cylindrical housing comprising a wall and an outer diameter. A plurality of latching members are at least partially disposed within the housing, the latching members being capable of moving independently between an inner position and an outer position, thereby defining a tool diameter. When the latching members are in their outer position the tool diameter is capable of being in excess of 150 percent of the housing diameter. The shifting tool can also contain latching members comprising a profile that

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Expandable shifting tool does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Expandable shifting tool, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Expandable shifting tool will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3173653

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.