Typewriting machines – Key-board or key lever-actuating mechanism – Key-cap or key-stem structure
Reexamination Certificate
2000-07-24
2003-03-25
Hilten, John S. (Department: 2854)
Typewriting machines
Key-board or key lever-actuating mechanism
Key-cap or key-stem structure
C400S472000, C400S489000
Reexamination Certificate
active
06536966
ABSTRACT:
FIELD OF THE INVENTION
This invention relates in general to the use of small computers and other lightweight or mobile electronic devices that receive data input by alphanumeric or operational means.
BACKGROUND OF THE INVENTION AND PRIOR ART
Throughout the 1990s the computers that millions of people now use worldwide have improved at an amazingly rapid rate, to the point that the power and mobility these devices now have is truly breathtaking. In particular, the amount of work they can do has greatly increased while at the same time their size has greatly decreased, the latter to the point that today a capacious and multifunctional computer can be made that is no bigger than a common video-cassette. But such devices have one major limitation: their keyboard keys are presently so small and close together that it is impossible to enter data into them at typical secretarial speed for any length of time. Indeed, in February 1998 one research manager for a major computer maker (Celeste Baranaski of Hewlett-Packard) said: “Unless some breakthrough is made in keyboard technology, many of these smaller travel keyboards just won't work.” And in that same month a journalist (David MacNeill of
Pen Computing Magazine
) Said of present palmtop computers that their “Inappropriate input methods, such as tiny QWERTY keyboards, hobble us in our attempt to enter our information into a device, wasting our time, and even causing physical pain.” Indeed, even a slight reduction in a keyboard's width may significantly reduce a typist's speed—as then the keys are arranged differently than the spacing at which one may be accustomed to typing.
However, a few inventors have long been aware of this potential deficit of typewriters, computers, laptops, palmtops, calculators, and other alphanumeric/operational input devices that are designed with versatility and mobility in mind. For example, in 1974 George Margolin in his U.S. Pat. No. 3,940,758 described an EXPANDABLE KEYBOARD FOR ELECTRONIC POCKET CALCULATORS AND THE LIKE, in which “a keyboard of familiar layout for a full-size desk top data terminal is organized in three modular portions:” which when closed its three modular portions are arranged in a stacked position as shown in FIG. 7 of Margolin's Patent. But it is obvious that Margolin's invention, while reducing the surface or ‘footprint’ area occupied by a standard desktop keyboard by about two-thirds, does so at a sacrifice of triply increasing the keyboard's depth, so that such a device could hardly be carried like a videocassette in one's pocket or purse. Then in 1991 Adrian Crissan in his U.S. Pat. No. 5,187,644 described a COMPACT PORTABLE COMPUTER HAVING AN EXPANDABLE FULL SIZE KEYBOARD WITH EXTENDIBLE SUPPORTS, in which the outer quarters of his keyboard comprise “a pair of fold-out flaps containing a portion of the keys” which can be rotated upward and inward so that when closed said outer quarters lay flat upon the middle half of the keyboard. But this arrangement also considerably increases the invention's depth by the thickness of its folded-over portions, as is obvious from examination of FIG. 1 of Crissan's Patent. A further deficit of Margolin's and Crissan's inventions is that when their keyboards' outer portions are folded onto their central portions, all the keys are concealed so they cannot be used when their keyboards are thusly closed. A number of other patented keyboards, especially U.S. Pat. No. 5,141,343 to Roylance for a COMPRESSIBLE/EXPANDABLE KEYBOARD WITH ADJUSTABLE KEY SPACING, U.S. Pat. No. 5,659,307 to Karidis et al for a KEYBOARD WITH BIASED MOVABLE KEYBOARD SECTIONS, U.S. Pat. No. 5,543,787 to Karidis et al for a KEYBOARD WITH TRANSLATING SECTIONS, and U.S. Pat. No. 5,870,034 to Wood for a COMPACT COMPUTING DEVICE WITH COMPRESSIBLE KEYBOARD (see also Classes 400/88 and 400/682) have keys arranged that close upward, downward, or sideward in various ways, but none of them simultaneously allow the parent system to (a) reduce its width by as much as 40 percent without compromising any other dimensional aspect and (b) operate in both open and closed positions as does the Disclosed Invention.
SUMMARY OF THE INVENTION
If one looks at a standard keyboard, one will notice a significant amount of space between the sides of any pair of adjacent keys. In a standard keyboard with ‘Chiclet’ style keys and a standard 19 mm pitch (center-to-center dimension between two adjacent keys), these intervening voids typically include about one-third the center-to-center distance between adjacent keys. Now if these voids could somehow be maintained when the keys were in standard or ‘open’ position, yet eliminated when the keys were in contracted or ‘closed’ position, a keyboard's total width could easily be reduced by about one-third when closed. Then if the sides of each key were given indented profiles that would allow each pair of adjacent keys to interlock when they closed, the distance between their centers could be reduced even more, until a 28-29 cm wide standard keyboard could easily be fitted into the 18-19 cm length of a common videocassette—at no increase of depth. This is what the Disclosed Invention does. Specifically, its keys are mounted on a laterally flexible assembly made of a multiple-X network of supporting busbars and interconnecting braces, in which the busbars conduct electronic data from any activated key mounted on their tops and the braces interconnect the busbars and stabilize them and the keys above; then the sides of adjacent keys have indented profiles that enable all the keys to be drawn even closer together than could occur with normally straight-sided keys. The busbars may also have positional guides beneath their front ends that keep the keyboard from sliding or moving out of place whether it is open or closed, and these guides may have electrical contacts that conduct electronic data from the keys' micro-circuitry to the operational circuitry of the parent computer or other electronic system, also whether the keyboard is open or closed. The Disclosed Invention's total assembly of keyboard and laterally flexible assembly would also remain thin, so its depth alone will not seriously impact the depth of the parent system in which it is installed.
The utility of the Disclosed Invention is further enhanced by certain means of trigonometric trickery that seem to deceive the eye. For example, when the laterally flexible assembly's sides extend from closed to open position, its front-to-back or longitudinal dimension must necessarily decrease; but surprisingly, when its lateral dimension is increased from 17.7 to 27.8 cm—more than 57 percent—its front-to-back dimension decreases by only 9.36 to 9.13 cm—hardly 2 percent. Indeed, at the above dimensions (which were taken from a working model made by the inventor), the disclosed keyboard's surface area when in open position is actually 53 percent greater than when closed. Thus this keyboard, while greatly increasing the width of its keys when it is extended to open position, does not create rows of keys whose fronts and backs become too close together when they are open nor does it seriously affect the longitudinal dimension of its parent system when they are closed. Another trigonometric trick of the Disclosed Invention's laterally flexible assembly is that when it contracts, the keys mounted on it rotate slightly, which allows the keys' indented side edges to interlock in a manner that enables the keys to have the same side-to-side symmetry as those of normal keyboard keys—qualities that make the disclosed keyboard more interesting and attractive as well as easier to use.
Subsequent to this Patent's original filing date, the Inventor has made numerous improvements to the Disclosed Invention and incorporated them into this Continuation-In-Part (C.I.P. No. 1), as described below:
As originally filed, the Disclosed Invention includes a certain matrix of electrical conductors that underlies the keys and conducts elect
LandOfFree
Expandable keyboard for small computers and the like does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Expandable keyboard for small computers and the like, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Expandable keyboard for small computers and the like will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3041006