Exhaust gasket with individually sealed water passages

Seal for a joint or juncture – Seal between fixed parts or static contact against... – Contact seal between parts of internal combustion engine

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06648338

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is generally related to an exhaust system for a marine propulsion system and, more particularly, to a gasket for an exhaust manifold and an exhaust elbow which are configured to separate the exhaust gas interface between the manifold and elbow from the coolant interface between those components in order to provide an elevated temperature at the interface and to decrease potential deleterious effects that could otherwise result from a coolant leak at the interface.
2. Description of the Prior Art
Marine propulsion systems are well known to those skilled in the art. In addition, exhaust systems for marine propulsion engines are also well known.
U.S. Pat. No. 4,866,934, which issued to Lindstedt on Sep. 19, 1989, discloses a marine drive exhaust system with shaped O-ring seals. The exhaust system is provided with resilient, shaped rubber O-ring seals between facing surfaces of the exhaust manifold and exhaust elbow and the facing surfaces of the exhaust elbow and the exhaust pipe. Each of the shaped O-ring seals has an inner peripheral rib extending peripherally around the exhaust passage and generally conforming to the shape thereof and begin spaced laterally between the exhaust passage and the peripheral water passages. Each of the shaped O-ring seals has an outer peripheral rib extending peripherally around the water passages and spaced laterally outward of the inner rib by a gap through which the water passages extend.
U.S. Pat. No. 6,290,558, which issued to Erickson on Sep. 18, 2001, discloses an exhaust elbow with a water trap for a marine propulsion system. The elbow for a marine propulsion exhaust system is provided with a water trap section that defines a water collection cavity. Within the water trap section, a barrier extends downward into the water collection cavity to define first and second exhaust passages. When water begins to collect in the water collection cavity, the cross sectional area of the exhaust passage is reduced and the velocity of exhaust gases passing through the exhaust passage is increased. The water collection cavity is shaped to be easily cleared when exhaust gas pressure increases as the engine speed increases.
U.S. Pat. No. 6,077,137, which issued to Hahn on Jun. 20, 2000, describes an anti ingestion device. The device is intended for use with an engine, preferably a marine engine. The device comprises an exhaust manifold or riser system for exhausting engine gases, wherein the exhaust manifold has a first end and a second end, and the first end is connected to a cylinder head. There is a one-way pressure relief valve having a first end and a second end, wherein the first end is coupled to the exhaust manifold and the second end is exposed to atmospheric pressure. An air inlet line is coupled to the second end of the one-way pressure relief valve, such that the air inlet line serves as a conduit for guiding atmospheric pressure to the one-way pressure relief valve, thereby providing atmospheric pressure for passage into the exhaust manifold.
U.S. Pat. No. 5,133,185, which issued to Gilbreath et al on Jul. 28, 1992, describes an anti-moisture device for an engine exhaust. The device for removing moisture droplets from an interior surface of a duct, characterized by an outer edge secured to the interior surface of the duct, an inner edge surrounding an opening, and a connecting wall between the outer and inner edges is described. The inner edge of the anti-moisture device is positioned closer to a downstream end of the duct than the outer edge whereby the connecting wall is positioned at an angle relative to the interior surface of the duct. Moisture droplets traveling upstream will be caught between the connecting wall and the interior surface of the duct, on the downstream side of the device. The connecting wall is dimensioned so that a turbulent disturbance will be created along the interior surface of the duct whereby moisture droplets will be removed. The anti-moisture device is preferably made of a thermally conductive material so that moisture droplets contacting the device will be flashed into steam, or vaporized.
U.S. Pat. No. 4,526,002, which issued to Bibow on Jul. 2, 1985, discloses an exhaust relief system. The engine of a stern drive is provided with a vacuum relief valve to relieve any vacuum which may occur in the exhaust manifold, thus preventing water from entering the engine through the exhaust system. The relief valve is connected to allow one-way flow from the intake manifold to the exhaust system, thus providing an essentially closed system.
U.S. Pat. No. 4,991,546, which issued to Yoshimura on Feb. 12, 1991, describes a cooling device for a boat engine. A number of embodiments of cooling systems for internal combustion engines powering marine watercraft, wherein the engine cooling jacket delivers its coolant to an exhaust manifold cooling jacket adjacent the inlet end of the exhaust manifold and wherein coolant is delivered from the exhaust manifold cooling jacket to a further cooling jacket around the inlet portion of an exhaust elbow is described. In one embodiment, a closed cooling system is provided for the engine cooling jacket, exhaust manifold cooling jacket, and the elbow cooling jacket. In another embodiment, the system discharges coolant back to the body of water in which the watercraft is operating through a further cooling jacket of the exhaust elbow that communicates with its discharge end.
U.S. Pat. No. 5,109,668, which issued to Lindstedt on May 5, 1992, discloses a marine exhaust manifold and elbow. The marine exhaust assembly includes a manifold portion, an elbow portion, a water jacket portion, and exhaust runner walls, providing a smooth continuous transition of exhaust gas flow from intake exhaust passages in the manifold portion to transfer exhaust passages in the elbow portion around a bend to a discharge exhaust passage minimizing turbulent flow of exhaust through the manifold portion and elbow portion. Each transfer exhaust passage has its own water supply inlet at the upstream end of the respective intake exhaust passage. An upper vent includes a steam outlet opening in the water jacket at the high point of the elbow portion, and a steam exhaust channel extending along the top exterior of the water jacket portion in a raised bead above and parallel to an upper water flow passage and directing steam to the end of the discharge exhaust passage to mix with water and exhaust thereat. Water supports assist in directing cooling water up through the water jacket to the top of the elbow bend, and also prevent wall collapse during lost foam stainless steel casting.
U.S. Pat. No. 6,022,254, which issued to Neisen on Feb. 8, 2000, discloses an exhaust system for an inboard/outboard marine propulsion system. The exhaust system includes intermediate exhaust pipes which are physically separate components than the water separator. A sealed latching mechanism connects an outlet portion of the intermediate exhaust pipes to an inlet portion of the water separator. The sealed latching mechanism is secured yet flexible, and allows the orientation of the intermediate exhaust pipe to be adjusted relative to the water separator, thus allowing the exhaust system to be installed and serviced without dismounting or loosening the engine. The intermediate exhaust pipes also have a flared inlet part to facilitate alignment of the intermediate exhaust pipe at the exhaust elbow.
The patents described above are hereby expressly incorporated by reference in the description of the present invention.
One potential problem that can occur in an exhaust system of a marine propulsion system is the reverse flow of water within the exhaust conduits, in a direction from the body of water in which the marine vessel is operated back toward the exhaust manifold of the engine, resulting from negative pressure pulses within the exhaust conduit. These negative pressure pulses can draw water in a reverse direction through the exhaust conduit toward the cylinders of the e

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Exhaust gasket with individually sealed water passages does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Exhaust gasket with individually sealed water passages, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Exhaust gasket with individually sealed water passages will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3144997

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.