Exhaust gas catalyst comprising rhodium, zirconia and rare...

Chemistry of inorganic compounds – Modifying or removing component of normally gaseous mixture – Nitrogen or nitrogenous component

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C502S303000, C502S304000, C502S326000, C502S349000, C060S595000, C060S596000, C123S434000, C180S054100

Reexamination Certificate

active

06692712

ABSTRACT:

This invention relates to a catalyst composition and a method of catalysing a chemical reaction employing it.
Rhodium is often used as a catalytically active material in the reduction of nitrogen oxides (NOx) to nitrogen. For this reason it is used as a catalytically active component of a three way catalyst (TWC) to treat engine exhaust gases. Three way catalysts operate by converting NOx to nitrogen CO to CO
2
and hydrocarbons (HC) to CO
2
and H
2
O at or about stoichiometric engine running conditions TWC's achieve high conversions of CO and NOx by containing as catalytically active material a large amount of palladium, for instance 100 g per ft
3
(3.53×10
3
g m
−3
), or a combination of a small amount of rhodium, for instance 6 g per ft
3
(211 g m
−3
), with a moderate amount of palladium, for instance 54 g per ft
3
(1.91×10
3
g m
3
), or with a moderate amount of platinum, for instance 33 g per ft
3
(1.17×10
3
g m
−3
), or with moderate amounts of palladium and platinum. The precious metal components platinum, palladium and rhodium, however, are rare and expensive, and can account for a large proportion of the total cost of a catalyst.
We have now found that by supporting the rhodium only on a support including ceria, zirconia and lanthanum oxide, which support is free from platinum and paladium, that comparable three-way catalytic activity can be achieved without the presence of palladium compared with known three-way catalyst compositions including both rhodium and palladium.
According to one aspect, the invention provides a three way catalyst composition comprising rhodium on a support which is free from platinum and palladium, which support comprising:
(a) 52-88% zirconia
(b′) 10-40% ceria, and
(b″) 2-8% lanthanum oxide
based on the total weight of (a), (b′) and (b″) the concentration of the rhodium on the support being 0.035%-0.35% based on the total weight of the rhodium and the support, the catalyst containing 1.2-4.0 g per in
3
(73-244×10
−3
g cm
−3
) in total of (a), (b′) and (b″) and wherein (a), (b′) and (b″) constitute 90-100% by weight of the support.
This combination of features provides the advantage that the catalyst is cheaper to make because not only is palladium unnecessary, but the amount of rhodium required is less than in prior known catalysts.
A further advantage is that the catalyst of the invention is less sensitive to poisoning by sulphur-containing compounds in engine exhaust gases.
According to a further aspect, the invention provides a method of catalysing a chemical reaction comprising the reduction of nitrogen oxide to nitrogen, which method comprises contacting the nitrogen oxide with a catalyst composition according to the invention.
There is much prior art on catalysts, but none has disclosed the present catalyst.
U.S. Pat. No. 5,057,483 discloses a catalyst composition comprising a carrier on which is disposed a catalytic material, the catalytic material comprising: a first coat carried on the carrier and comprising a first activated alumina support, a catalytically effective amount of a first platinum catalytic component dispersed on the first alumina support, and a catalytically effective amount of bulk ceria; and a second coat carried by the carrier and comprising a co-formed rare earth oxide-zirconia support, a catalytically effective amount of a first rhodium catalytic component dispersed on the co-formed rare earth oxide-zirconia support, a second activated alumina support, and a catalytically effective amount of a second platinum catalytic component dispersed on the second alumina support.
PCT specification WO 98/03251 discloses a method of making a platinum group metal three-way catalyst composition which contains a high temperature catalytic component and a low temperature catalytic component with each catalytic component being present in the catalyst composition as separate distinct particles in the same washcoat layer which method comprises (a) forming on a non-porous substrate a combined washcoat of a high temperature catalyst support material and a low temperature catalyst support material from a slurry in which each of the catalyst support materials is of sufficiently large particle size so as to prevent each catalyst support material from forming a solution or a sol with the liquid medium of the slurry; and (b) impregnating a platinum group metal or metals into each catalyst support material either after formation of the washcoat on the non-porous substrate or before forming the washcoat slurry.
The catalyst composition of the present invention is of surprisingly high activity, especially for the reduction of nitrogen oxide to nitrogen, particularly in combination with the oxidation of CO to CO
2
. It is also of high activity for the oxidation of HC to CO
2
and H
2
O. It has high thermal durability. Thus, it is particularly effective as a TWC. It does not require the presence of Pt or Pd. The present catalyst contains only a low concentration of Rh on the support, but omitting Pt and Pd from prior art catalyst and including only this low concentration of Rh results in relatively low NOx conversion and low CO and HC conversions. The present catalyst can provide the same conversion of CO to CO
2
and of NOx to nitrogen as prior an catalyst containing the same amount of Rh but in addition Pd. The present catalyst is less sensitive to S poisoning than are catalysts based primarily on Pd at high loading.
The catalyst composition of the present invention comprises a low concentration of rhodium on a particular support whose essential components are present in high concentration in the catalyst.
The catalyst can be in conventional form, for instance a pellet bed or foam but preferably a honeycomb monolith through whose holes engine gas flows and in whose holes the rhodium on a support is carried. The catalyst, whether it be a monolith or pellet bed or foam or otherwise will have a certain overall volume, and it is to this volume that the 1.2-4.0 g per in
3
(73-244×10
−3
g cm
−3
) concentration of the rhodium support relates. The volume includes the voids within the catalyst, for instance the unoccupied parts of a monolith through which the gas flows; this is a convenient way of expressing the concentration.
The catalyst composition contains 1.2-4.0 g per in
3
(73-244×10
−3
g cm
−3
) , preferably 1.2-3.2 g, per in
3
(73-195×10
−3
g cm
−3
) in total of the rhodium. The concentration of rhodium on the support is 0.035-0.35%, preferably 0.1-0.35%, based on the total weight of the rhodium and the support.
The support of the present invention comprises:
(a) 52-88% zirconia,
(b′) 10-40% ceria, and
(b″) 2-8% lanthanum oxide based on the total weight of (a), (b′) and (b″).
Preferably, the support comprises:
(a) 72-82% zirconia
(b′) 15-25% ceria, and
(b″) 3-5% lanthanum oxide, based on the total weight of (a), (b′) and (b″).
(a), (b′) and (b″) preferably constitute 100% of the support though other materials can also be present; alumina, however, is preferably avoided, so as to avoid rhodium-alumina interactions. (a), (b′) and (b″) constitute 90-100% by weight of the support. Especially preferred is the support consisting essentially of
(a) 72-82% zirconia,
(b′) 15-25% ceria, and
(b″) 3-5% lanthanum oxide based on the total weight of (a), (b′) and (b″).
The catalyst composition comprises rhodium on the support. It can contain additional materials, which can be conventional in themselves. For instance, the rhodium on the support can be in admixture with H
2
S suppressant material, eg one or more of NiO, Fe
2
O
3
, Co
3
O
4
and MnO
2
; NiO is preferred. Alternatively, the H
2
S suppressant material can be in a layer over the rhodium on the support. The loading of the H
2
S suppressant material is usually 0.05-0.5 g per in
3
(3.1-30.5×10
−3
g cm
−3
)
The

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Exhaust gas catalyst comprising rhodium, zirconia and rare... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Exhaust gas catalyst comprising rhodium, zirconia and rare..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Exhaust gas catalyst comprising rhodium, zirconia and rare... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3351982

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.