Exercise trainer with a stride multiplier

Exercise devices – Involving user translation or physical simulation thereof – Bicycling

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C482S052000, C482S070000

Reexamination Certificate

active

06183398

ABSTRACT:

BACKGROUND OF THE INVENTION AND PRIOR ART
1. Field of the Invention
This invention pertains to exercise apparatus which is in the form of a trainer that provides a simulated walking or running stride. The trainer of this invention falls within the field of exercise devices such as stepping machines, simulated cross country ski machines, stationary bicycles, as well as other types of exercise trainers. It more particularly relates to those types of exercise trainers within the art and background related to pedals that can be reciprocated as attached to a pair of cranks to provide for a simulated walking or running motion. In particular, it relates to those training and exercise devices which approximate an elliptical motion with respect to a user's foot movements.
2. Prior Art
Exercise and training devices come in many forms. As is generally known, such exercise devices can include stationary bicycles such as those of the reclining and vertical type. Further to this extent, there are such devices that are simulated stepping machines which allow one to step upwardly and downwardly to simulate a climbing of stairs. Also well known are treadmills that simulate running, jogging, and walking vigorously.
There are other well known devices that not only include cycling but also efforts related to treadmill workouts.
Treadmills generally permit a user to walk, jog or run on a stationary machine. However, they are considered impact devices which in some cases are not as beneficial to the user as for example a low impact device such as a bicycle whether it be a reclining or vertical bicycle or such stepping machines as are known in the art.
There are exercise trainers that are currently known in the art that simulate a running, walking, or jogging effort on a pair of pedals. These pedals are physically connected to cranks that are under a load.
It is preferable, that such exercise trainers have their pedals trace a path approximating an ellipse or what can be considered as a modified elliptical path. One of the drawbacks of such modified elliptical paths is that the major axis of the path is limited to being shorter than twice the crank's length. This is due to the fact that the axis of the crank as it turns a wheel or other device when considered with the axis of the connection at the end of the crank limits the overall stroke distance which forms the major axis of the modified elliptical path to that distance minus the axial orientations.
For example to achieve a sixteen inch length in the major axis of an elliptical like trainer, such cranks of a trainer need to have a longer crank length than half the length which would be eight inches. This takes into account the journaling and bearing mountings. From a practical standpoint in order to provide a sixteen inch length of the major axis of the modified elliptical path, a nine inch long crank must be utilized to provide approximately an eighteen inch diameter circle.
When the foregoing translates to the diameter of the wheel or disk under load that is being driven, it creates a significantly high pedal step up. In effect, to move or run at a sixteen inch stride even with such a large diameter disk or wheel utilizing the nine inch long crank shaft, the effect is that of a diminished step that could be analogized to a “baby step”. It has been found in the past that this did not provide sufficient aerobic effort nor provide for enough hip flexure to maximize a cardiovascular workout through the leg, hip, quadriceps, and other muscle portions of the body.
Much of the prior art relies upon foot pedals that rigidly attach to foot links. These foot links are generally in connected relationship to the ends of the cranks. Usually there is little or no relative motion between the foot pedals and the foot links. This serves to limit the major axis as to the length of the major axis of the modified elliptical path inscribed by the foot pedal.
In order to overcome the deficiencies of the prior art, this invention utilizes a unique relative motion concept with respect to the foot links and the foot pedals. The invention in order to accomplish this, utilizes a foot pedal mounted with rollers on the foot link. The foot pedals are oriented with the foot links by means of these rollers which travel in a concave channel along the length of the foot link. This traveling of the rollers in the concave channels allows relative motion when the foot pedal has been maintained by a relationship to a ground or non-moving portion. The foot pedal moves in relationship to a fixed or grounded area such as to the frame.
In order to maintain this relative movement relationship, a flexible belt like element that can be in the form of a belt, chain, cable, or other member allows the foot pedal to slide relative to the foot link as the foot link reciprocates backwardly and forwardly. In effect, the flexible member pulls the foot pedal relative to the foot link in the direction of foot link travel. The net effect is to increase the stride length by a factor of four. The normal relative movement would be two times the crank length.
The net result of the foregoing is to create a movement whereby the foot links with the flexible member when moving backwardly cause a pulling of the foot pedals backwardly along the length of the foot link. This creates a stride with a modified elliptical motion while at the same time maintaining a small crank diameter such that the major axis of the modified ellipse is four times the length of the crank.
As will be seen hereinafter, this invention is a significant step over the art and can be modified by various belt or flexible member orientations with regard to the ground and the flexible member as well as the movement of the foot link.
SUMMARY OF THE INVENTION
In summation, this invention comprises an exercise trainer having a load applied to a rotational disk or wheel connected to cranks which are in turn connected to a pair of foot links having foot pedals which are provided with relative movement to multiply the distance which the foot links move through a relative movement of the foot pedals in relationship to the foot links.
More specifically, the invention incorporates a pair of foot links which are supported on rollers at one end for reciprocating movement thereon. At the other end, the foot links are attached to a pair of cranks. Each respective crank has a bearing for attachment of the foot links for rotational movement with regard to the cranks as journaled thereon. The cranks are connected to a wheel or disk. The wheel or disk is in turn connected to a loading device which can be in the form of a mechanical load, such as a brake applied to the wheel, or in the alternative, and preferably, an electro-mechanical load such as an alternator. The alternator can have its output connected to a resistance bank which in turn can be a variable resistance bank to change the load on the alternator and the attendant wheel and disk and attached cranks.
Each foot link is formed as an extrusion having channels therein and an open center tunnel or passage portion. The channels are such where they can support and guide the foot pedals on rollers. Further to this extent, the channels also provide for a movement on rollers at a distal end from the crank arms. The channels in effect, allow the rollers to be engaged internally and support the foot link as it reciprocates backwardly and forwardly on the rollers in a reciprocating and at the same time a pivoting manner thereon.
The entire trainer is supported on an underlying frame. Attached to the frame is a ground point which extends upwardly into the central cross-sectioned tunnel area of the foot link. The ground point can extend from a post or columnar support or other means through the cross-sectional area of the foot link which is cut away in the form of an elongated slot. The ground point allows for attachment of a flexible member in a fixed grounded relationship. The flexible member is comprised of a belt, chain, cable, or other means to allow the relative movement of the foot link to p

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Exercise trainer with a stride multiplier does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Exercise trainer with a stride multiplier, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Exercise trainer with a stride multiplier will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2605484

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.