Exercise devices – Involving user translation or physical simulation thereof – Stair climbing
Reexamination Certificate
2001-05-29
2004-06-22
Crow, Stephen R. (Department: 3764)
Exercise devices
Involving user translation or physical simulation thereof
Stair climbing
C482S051000
Reexamination Certificate
active
06752744
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to exercise equipment, and more specifically to a stationary exercise device that links upper and lower body movements in a safe and stable manner.
BACKGROUND OF THE INVENTION
The benefits of regular aerobic exercise have been well established and accepted. However, due to time constraints, inclement weather, and other reasons, many people are prevented from aerobic activities such as walking, jogging, running, and swimming. In response, a variety of exercise equipment have been developed for aerobic activity. It is generally desirable to exercise a large number of different muscles over a significantly large range of motion so as to provide for balanced physical development, to maximize muscle length and flexibility, and to achieve optimum levels of aerobic exercise. A further advantageous characteristic of exercise equipment, is the ability to provide smooth and natural motion, thus avoiding significant jarring and straining that can damage both muscles and joints.
While various exercise systems are known in the prior art, these systems suffer from a variety of shortcomings that limit their benefits and/or include unnecessary risks and undesirable features. For example, stationary bicycles are a popular exercise system in the prior art, however this machine employs a sitting position which utilizes only a relatively small number of muscles, throughout a fairly limited range of motion. Cross-country skiing devices are also utilized by many people to simulate the gliding motion of cross-country skiing. While this device exercises more muscles than a stationary bicycle, the substantially flat shuffling foot motion provided thereby, limits the range of motion of some of the muscles being exercised. Another type of exercise device simulates stair climbing. These devices exercise more muscles than do stationary bicycles, however, the rather limited range of up-and-down motion utilized does not exercise the user's leg muscles through a large range of motion. Treadmills are still a further type of exercise device in the prior art, and allow natural walking or jogging motions in a relatively limited area. A drawback of the treadmill, however, is that significant jarring of the hip, knee, ankle and other joints of the body may occur through use of this device.
A further limitation of a majority of exercise systems in the prior art, is that the systems are limited in the types of motions that they can produce, such as not being capable of producing elliptical motion. Exercise systems create elliptical motion, as referred to herein, when the path traveled by a user's feet while using the exercise system follows an arcuate or ellipse-shaped path of travel. Elliptical motion is much more natural and analogous to running, jogging, walking, etc., than the linear-type, back and forth motions produced by some prior art exercise equipment.
Exercise devices are also desirable which provide the additional advantage of being configured to provide arm and shoulder motions, as well as arcuate foot motions. Prior art devices utilizing arm and shoulder motions that are linked to foot motions incorporate forced coordinated motion, where the motions of a user's feet are linked to the motions of a user's arms and shoulders, so that one's feet are forced to move in response to the movement of one's arms and shoulders (in substantially an equal and opposite amount), and vice versa. Still other prior art devices limit the range of motions utilized by their systems, which can result in detrimental effects on a user's muscle flexibility and coordination due to the continued reliance on the small range motion produced by these exercise devices, as opposed to the wide range of natural motions that are experienced in activities such as running, walking, etc.
Despite the large number of exercise devices known in the prior art there is still a need for an exercise device which produces elliptical foot movement, and incorporates substantially related arm and shoulder rotational motions that are linked to the foot movements of the user. Another continuing problem in the art for exercise devices that work both the upper and lower body in associated motion, has been the tendency for upper body linkage to destabilize lower body linkage due to the upward force imparted onto the lower body linkage from the upper body linkage. Lower body linkages typically run along some type of track mechanism. Since the upper body linkage typically connects to the front of the lower body linkage, upward momentum from the upper body linkage can cause to lower body linkage to derail from the track mechanism, or otherwise produce undesirable types of wobbling and instability. There is a continuing need for an exercise device that provides for smooth natural action, exercises a relatively large number of muscles through a large range of elliptical motion, employs arm, shoulder, and rotational movement, and provides some type of mechanism for increased safety and stability.
SUMMARY OF THE INVENTION
The present invention is directed towards a device that exercises both the upper and lower body in associated motion, while preventing derailment or other related instability of the lower body linkage, due to the connection and force imparted from the upper body linkage. The exercise device utilizes a frame to which a transverse axis is mounted. Coupling mechanisms are configured to operatively associate with foot links for associating the foot links to the transverse axis such that the foot support portion of each foot link travels in a reciprocal path as the transverse axis rotates. Each foot link includes a first end portion, a second end portion and a foot support portion therebetween. The first end portions of the foot links terminate in rollers, which engage guide tracks that are mounted to the frame. Swing arm mechanisms, which include a gripping portion, a pivot point, and a coupling region, operatively associate the coupling region of each swing arm mechanism with the respective first end portion of each foot link, by way of safety engagement assemblies. Each safety engagement assembly includes an abutment arm and a curved attachment link, which together prevent the derailment of the foot link rollers from the guide tracks.
In a preferred embodiment of the present invention, the rollers at the first end portions of the foot links rollably engage the guide rails. The upper surface of the guide rails have engagement grooves that are sized and configured to correspondingly mate with the rollers of the foot links. The safety engagement assemblies are designed to prevent the foot link rollers from derailing from the guide rail engagement grooves. Preferably, the safety engagement assemblies each include an abutment arm and a curved attachment link. The abutment arm is rotatably associated with the curved attachment link. The curved attachment links operatively connect the foot links to the abutment arms, while the abutment arms operatively connect the curved attachment links to the swing arm mechanisms.
The abutment arms further include abutment knobs that translate beneath the lower surface of the guide rails and substantially prevent the foot links from disengaging from the guide rails through intermittent contact with the guide rail lower surfaces. The lower surface of the guide rails also contain stabilizing troughs on the guide rail lower surfaces. The abutment knobs of the abutment arms are aligned with the guide rail stabilizing troughs. Preferably, the abutment knobs of the abutment arms substantially prevent the foot links from disengaging from the guide rails through intermittent contact with the guide rail stabilizing troughs.
In one preferred embodiment, the guide tracks of the present invention are mounted to the frame of the exercise device at an inclined angle from horizontal. In another preferred embodiment of the present invention, the guide tracks are not statically mounted to the frame, but rather incorporate a mechanism for selectively
Arnold Peter
Baum Michael
Lamb Philip S.
Sand Mark
Christensen O'Connor Johnson & Kindness PLLC
Crow Stephen R.
Precor Incorporated
LandOfFree
Exercise device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Exercise device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Exercise device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3364829