Execution of services in intelligent network

Telephonic communications – Special services – Service profile

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S207020, C379S221090, C379S221120, C379S201050, C707S793000

Reexamination Certificate

active

06463140

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to execution of services in an intelligent network.
BACKGROUND OF THE INVENTION
The rapid development of the telecommunication field has made it possible for operators to provide users with services of many different types. One such network architecture providing advanced services is called the Intelligent Network, for which the abbreviation IN is generally used. Examples of such services are the Virtual Private Network VPN, which allows the use of short numbers between subscribers of the private network, and the Personal Number, where the intelligent network re-routes calls made to the personal number in a manner controlled by the subscriber. IN-services are utilized by various networks, such as mobile communications networks and fixed networks connected to IN.
The physical architecture of the intelligent network is illustrated in
FIG. 1
, where the physical entities are shown as rectangles or cylinders and the functional entities located in them are shown as ovals. This architecture is described briefly below, since references will be made to an intelligent network environment in the description of the invention to follow. An interested reader may acquire a more detailed understanding of the intelligent network from ITU-T recommendations Q.121X or from Bellcore's AIN recommendations, for example. ETS 300 374-1 CorelNAP terms will be used in the description of the invention and of its background, but the invention can also be used in intelligent networks implemented in accordance with other intelligent network standards.
The Subscriber Equipment SE, which may be a telephone, a mobile station, a computer, or a fax, for example, is either connected directly to a Service Switching Point SSP or to a Network Access Point NAP. A service switching point SSP provides the user with access to the network and attends to all necessary dialing functions. The SSP is also able to detect the need for an intelligent network service request. In functional terms, the SSP includes call management, routing, and service dialing functions.
The Service Control Point SCP includes Service Logic Programs SLP, which are used to produce intelligent network services. In the following, “service program” will also be used as a shorter form for “service logic programs”.
The Service Data Point SDP is a database containing such data about the subscriber and the intelligent network which the SCP service programs use for producing individualized services. The SCP may use SDP services directly by way of a signaling or data network.
The Intelligent Peripheral IP provides special functions, such as announcements, and voice and multiple dialing identification.
The signaling network shown in the figure is a network according to Signalling System Number 7 (SS7), a known signaling system described in the Specifications of Signalling System No. 7 of the CCITT (nowadays ITU-T), Melbourne 1988.
The Call Control Agent Function (CCAF) ensures that the end user (subscriber) has access to the network. Access to IN-services is implemented through additions made to existing digital exchanges. This is done by using the Basic Call State Model BCSM, which describes the various stages of call handling and includes those points or Detection Points DP where the call handling can be interrupted in order to start intelligent network services. At these detection points, the service logic entities of the intelligent network may be in an interaction relation with the basic call and connection management function. In the exchange, the call set-up is divided into two parts: the call set-up in the originating half and the call set-up in the terminating half. As a rough description, call handling in the originating half is related to the services of the calling subscriber, while call handling in the terminating half is related to the services of the called subscriber. The corresponding state models are the Originating Basic Call State Model (O-BCSM) and the Terminating Basic Call State Model (T-BCSM). The BCSM is a high-level state automaton description of those Call Control Functions (CCF) needed for setting up and maintaining a connection between the users. Functionality is added to this state model with the aid of the Service Switching Function (SSF) (cf. partial overlapping of CCFs and SSFs in
FIG. 1
) to make it possible to decide when intelligent network services (i.e. IN-services) should be requested. When IN-services have been requested, the Service Control Function (SCF), including the service logic of the intelligent network, attends to the service-related processing (in call establishment). Thus, the Service Switching Function SSF connects the Call Control Function CCF to the Service Control Function SCF and allows the Service Control Function SCF to control the Call Control Function CCF.
The intelligent network service is implemented in such a way that in connection with the encounter of service-related detection points the Service Switching Point SSP asks the Service Control Point SCP for instructions with the aid of messages relayed over the SSP/SCP interface. In intelligent network terminology these messages are called operations. The SCF may request, for example, that the SSF/CCF perform certain call or connection functions, such as charging or routing actions. The SCF may also send requests to the Service Data Function (SDF), which provides access to service-related data and network data of the intelligent network. Thus the SCF may request, for example, that the SDF fetches data concerning a certain service or that it updates this data.
The above functions involved in interaction with the subscriber are supplemented by a Specialised Resources Function SRF providing an interface for those network mechanisms. Examples are messages to the subscriber and the collection of the subscriber's dialing.
The following is a brief description of the role of the functional entities shown in
FIG. 1
in terms of IN-services. The CCAF receives the service request made by the calling party, which is typically made by the calling party lifting the receiver and/or dialing a certain number series. The CCAF relays the service request further to the CCF/SSF for processing. The CCF has no service data, but it is programmed to identify those detection points where a SCP visit might be made. The CCF interrupts the call set-up for a moment and gives the service switching function SSF data about the detection point encountered (about the stage of call set-up). It is the duty of the SSF through use of predetermined criteria to interpret whether the task is a service request related to intelligent network services. If this is the case, the SSF sends to the SCF a standardized IN-service request, including data related to the call. The SCF receives the request and decodes it. Then it works together with the SSF/CCF, SRF, and SDF in order to produce the requested service for the end user.
As was presented above, service is started when the SSF sends to the SCF a standard IN-service request. The service request may be sent during certain stages of the call.
FIG. 2
illustrates a few basic operations of a state-of-the-art function of an intelligent network at detection points. At point
21
the SSP sends to the SCP an InitialDP service request, including basic data on the call for starting the intelligent network service. Thereupon the arming of detection points in the SSP follows. At point
22
the SCP sends to the SSP a RequestReportBCSMEvent operation telling the SSP which detection points it should report to the SCP. Next, at point
23
, the SCP typically sends charging and/or interaction operations, such as ApplyCharging (e.g. a request for a charging report) or PlayAnnouncement (give an announcement to the subscriber). At point
24
the SCP sends to the SSP a routing instruction, such as Connect (route the call to a new number) or Continue (continue the call set-up with the same data). When it meets the detection point reserved by the SCP, the SSP sends to the SCP an EventReportBCSM operation at

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Execution of services in intelligent network does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Execution of services in intelligent network, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Execution of services in intelligent network will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2989661

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.