Exclusion of ascending/descending aorta and/or aortic arch...

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Arterial prosthesis – Stent combined with surgical delivery system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C623S001130, C623S001230

Reexamination Certificate

active

06723116

ABSTRACT:

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to cardio vascular disease and the treatment thereof. More particularly, the invention pertains to a method and apparatus for treating an aneurysm of the ascending/descending aorta and/or aortic arch.
2. Description of the Prior Art
By way of background, existing techniques for exclusion of an aneurysm in the ascending/descending aorta and/or the aortic arch require the use of a heart lung machine and drastic reductions in patient body temperature, followed by excision and replacement of the diseased aortic arch section. These techniques are associated with a high rate of complications, morbidities, and mortalities. It would be desirable if an exclusion of an aortic arch region could be performed without entering the chest or mediastinum, as by use of a transfemoral or other percutaneous technique, and preferably requiring only local anesthesia and sedation.
SUMMARY OF THE INVENTION
The foregoing problems are solved and an advance in the art is obtained by a novel system and method for the exclusion of an aneurysm of the ascending/descending aorta and/or the aortic arch using an aortic arch graft and a graft delivery system capable of maneuvering around an aortic arch. An occluder system may also be provided for occluding one or more of the left subclavian artery, the left common carotid artery and the right innominate artery, and with bypass of one or more of those arteries being performed using selected bypass lumina.
In one embodiment of the invention, the aortic arch graft has branches and in another embodiment the aortic arch graft is branchless. The grafts may be stented or stentless, and they may have various additional features, such as connection members adapted for use during graft deployment, for stent restraint, for graft positioning or for other purposes.
In one implementation of a branchless aortic arch graft, the aortic graft has a built-in singular self-deploying occluder that provides the occluder system. The occluder is preferably sized to be larger than the distance in an aortic arch between a left subclavian artery and a right innominate artery. The occluder may contain an optional support ring sewn internally at the base of the occluder.
In another implementation of a branchless aortic arch graft, the graft has built-in multiple deployable occluders providing the occluder system. The occluders are preferably sized to respectively correspond to the diameters of a left subclavian artery, a left common carotid artery, and a right innominate artery. The occluders can be self-deploying or can be manually deployed by use of a guide member attached to the top of each occluder.
The graft delivery system of the invention may include a flexible tubular sheath surrounding a plunger mechanism, a catheter with a shaped tip, and a flexible guide wire. The sheath preferably has a flexible end that is capable of bending and maneuvering in any direction, up and around an artery or vessel. Manipulation of the flexible end can be performed with the aid of a guidance mechanism running end to end along the sheath. The guidance mechanism is adapted to be manipulated manually at the distal end of the sheath.
In an alternative implementation of the graft delivery system, a hoisting system is used to introduce the aortic arch graft. The graft has two or more connection members at one end, which can be attached with hoisting elements to an eyelet formed on the flexible guide wire. The hoisting elements and the guide wire extend internally through the graft. They are used to position the graft in an aortic arch and/or ascending/descending aorta by pulling on the hoisting elements after positioning the guide wire, and pulling the graft up towards the eyelet on the guide wire.
The occluder system of the invention may include individual occluders adapted to occlude one or more of a left subclavian artery, a left common carotid artery, and a right innominate artery. Each occluder may have one or more protruding anchor members adjacent to one end thereof. The anchor members are sized to anchor themselves to the wall of an artery.
The invention further contemplates an aortic arch aneurysm repair kit having an aortic arch graft, stents, occluders for occluding one or more of a left subclavian artery, a left common carotid artery, and a right innominate artery, and an optimal delivery system.
The invention further contemplates methods for repair of an ascending/descending aorta or aortic arch aneurysm. One method is for use with a branchless aortic arch graft. According to this method, a left carotid-subclavian bypass between the left common carotid artery and the left subclavian artery is performed, together with a bilateral femoral-axillary bypass between the right femoral artery and the right subclavian artery, and between the left femoral artery and the left subclavian artery. Next, the left subclavian artery, the left common carotid artery, and the right innominate artery are occluded proximate to the aortic arch. A branchless aortic arch graft is then introduced via a percutaneous approach and positioned in the ascending/descending aorta and/or aortic arch. Another method in accordance with the invention is for use with a branched aortic arch graft. According to this method, a left carotid-subclavian bypass between the left common carotid artery and the left subclavian artery is performed. Next, the left carotid artery is occluded proximate to the aortic arch. A branched aortic arch graft is then introduced via a percutaneous approach and positioned in the ascending/descending aorta and/or aortic arch and respective branches.


REFERENCES:
patent: 5617878 (1997-04-01), Taheri
patent: 5800521 (1998-09-01), Orth
patent: 5948017 (1999-09-01), Taheri
patent: 5989263 (1999-11-01), Shmulewitz
patent: 6030414 (2000-02-01), Taheri
patent: 6099548 (2000-08-01), Taheri
patent: 6106549 (2000-08-01), Taheri
patent: 6253768 (2001-07-01), Wilk
patent: 6409750 (2002-06-01), Hyodoh et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Exclusion of ascending/descending aorta and/or aortic arch... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Exclusion of ascending/descending aorta and/or aortic arch..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Exclusion of ascending/descending aorta and/or aortic arch... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3206668

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.