Surgery – Instruments – Blood vessel – duct or teat cutter – scrapper or abrader
Reexamination Certificate
1998-03-27
2003-04-08
Dawson, Glenn K. (Department: 3761)
Surgery
Instruments
Blood vessel, duct or teat cutter, scrapper or abrader
C606S200000, C604S528000, C604S264000, C604S096010
Reexamination Certificate
active
06544276
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to medical catheters used in treating saphenous vein grafts, coronary arteries, and other blood vessels, and more particularly, to a method for exchanging catheters during emboli containment in such vessels.
2. Description of the Related Art
Guidewires are conventionally used to guide the insertion of various medical instruments, such as catheters, to a desired treatment location within a patient's vasculature. In a typical procedure, the clinician forms an access point for the guidewire by creating an opening in a peripheral blood vessel, such as the femoral artery. The highly flexible guidewire is then introduced through the opening into the peripheral blood vessel, and is then advanced by the clinician through the patient's blood vessels until the guidewire extends across the vessel segment to be treated. Various treatment catheters, such as a balloon dilatation catheter for a percutaneous transluminal coronary angioplasty, may then be inserted over the guidewire and similarly advanced through vasculature until they reach the treatment site.
In certain treatment procedures, it is desirable to successively introduce and then remove a number of different treatment catheters over a guidewire that has been placed in a particular location. In other words, one treatment catheter is “exchanged” for another over a single guidewire. Such an exchange typically involves withdrawing the treatment catheter over the guidewire until the treatment catheter is fully removed from the patient and the portion of the guidewire which extends from the patient. The guidewire is then available to act as a guide for a different treatment catheter.
As can be readily appreciated, the withdrawal of treatment catheters over a placed guidewire may result in the guidewire being displaced from its position. To overcome this difficulty, the prior art has developed “anchorable” guidewires, which generally feature some structure on their distal ends to releasably secure the guidewire at a particular location in the patient for the duration of the medical procedure. One such anchorable guidewire is disclosed in U.S. Pat. No. 5,167,239 to Cohen et al., which discloses a hollow guidewire with an inflation lumen and an expandable balloon on its end. The Cohen device includes a removable inflation manifold, and a check valve to maintain the balloon in the inflated state when the manifold is removed. The check valve apparatus used by the Cohen device is relatively bulky, and is described as having an outer diameter in its preferred embodiment of 0.0355 inches. Consequently, any treatment catheter intended to be inserted over the Cohen device must have an interior guidewire lumen larger than the outer diameter of the Cohen valve, which for the preferred embodiment, requires an interior lumen with a diameter of more than 0.0355 inches. Cohen also does not address the problem of emboli containment.
As is readily appreciated by those of skill in the art, increasing the interior lumen size of a treatment catheter results in an increase in the outer diameter of the treatment catheter. However, many blood vessels where it is desirable to apply catheter treatment are quite narrow. For example, the left coronary arteries are blood vessels having diameters ranging from 2 to 4 mm, and are susceptible to plaque. Similarly, saphenous vein grafts (SVG) and the carotid arteries are also quite small and susceptible to plaque, and could not practically be treated by larger diameter devices.
Human blood vessels often become occluded or completely blocked by plaque, thrombi, other deposits, emboli or other substances, which reduce the blood carrying capacity of the vessel. Should the blockage occur at a critical place in the circulatory system, serious and permanent injury, or even death, can occur. To prevent this, some form of medical intervention is usually performed when significant occlusion is detected.
Coronary heart disease is an extremely common disorder in developed countries, and is the leading cause of death in the U.S. Damage to or malfunction of the heart is caused by narrowing or blockage of the coronary arteries (atherosclerosis) that supply blood to the heart. The coronary arteries are first narrowed and may eventually be completely blocked by plaque, and may further be complicated by the formation of thrombi (blood clots) on the roughened surfaces of the plaques. Myocardial infarction can result from atherosclerosis, especially from an occlusive or near occlusive thrombi overlying or adjacent to the atherosclerotic plaque, leading to death of portions of the heart muscle. Thrombi and emboli also often result from myocardial infarction, and these clots can block the coronary arteries, or can migrate further downstream, causing additional complications.
Various types of intervention techniques have been developed which facilitate the reduction or removal of the blockage in the blood vessel, allowing increased blood flow through the vessel. One technique for treating stenosis or occlusion of a blood vessel is balloon angioplasty. A balloon catheter is inserted into the narrowed or blocked area, and the balloon is inflated to expand the constricted area. In many cases, near normal blood flow is restored. It can be difficult, however, to treat plaque deposits and thrombi in the coronary arteries, because the coronary arteries are small, which makes accessing them with commonly used catheters difficult.
Other types of intervention include atherectomy, deployment of stents, introduction of specific medication by infusion, and bypass surgery. Each of these methods are not without the risk of embolism caused by the dislodgement of the blocking material which then moves downstream. In addition, the size of the blocked vessel may limit percutaneous access to the vessel.
In coronary bypass surgery, a more costly and invasive form of intervention, a section of a vein, usually the saphenous vein taken from the leg, is used to form a connection between the aorta and the coronary artery distal to the obstruction. Over time, however, the saphenous vein graft may itself become diseased, stenosed, or occluded, similar to the bypassed vessel. Atherosclerotic plaque in saphenous vein grafts tends to be more friable and less fibrocalcific than its counterpart in native coronary arteries.
Diffusely diseased old saphenous vein grafts with friable atherosclerotic lesions and thrombi have therefore been associated with iatrogenic distal embolic debris. Balloon dilatation of saphenous vein grafts is more likely to produce symptomatic embolization than dilatation of the coronary arteries, not only because of the difference in the plaque but also because vein grafts and their atheromatous plaques are generally larger than the coronary arteries to which they are anastomosed. Once the plaque and thrombi are dislodged from the vein, they can move downstream, completely blocking another portion of the coronary artery and causing myocardial infarction. In fact, coronary embolization as a complication of balloon angioplasty of saphenous vein grafts is higher than that in balloon angioplasty of native coronary arteries. Therefore, balloon angioplasty of vein grafts is performed with the realization that involvement by friable atherosclerosis is likely and that atheroembolization represents a significant risk.
Because of these complications and high recurrence rates, old diffusely diseased saphenous vein grafts have been considered contraindications for angioplasty and atherectomy, severely limiting the options for minimally invasive treatment. However, some diffusely diseased or occluded saphenous vein grafts may be associated with acute ischemic syndromes, necessitating some form of intervention.
Furthermore, attempts heretofore have been made to treat occlusions in the carotid arteries leading to the brain. However, such arteries have been very difficult to treat because of the possibility of dislodging plaque which can enter various arterial vessels of th
Dawson Glenn K.
Medtronic AVE. Inc.
LandOfFree
Exchange method for emboli containment does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Exchange method for emboli containment, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Exchange method for emboli containment will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3021077