Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...
Reexamination Certificate
2011-07-12
2011-07-12
Landsman, Robert (Department: 1647)
Chemistry: molecular biology and microbiology
Measuring or testing process involving enzymes or...
Involving antigen-antibody binding, specific binding protein...
Reexamination Certificate
active
07977061
ABSTRACT:
Disclosed herein is a method for measuring the contractility of intestinal tissue upon treatment with GLP-2 or a GLP-2 ligand. Also disclosed is an assay which directly measures the activity of GLP-2 or GLP-2 ligands ex vivo and permits the screening of putative GLP-2 ligands in native tissue.
REFERENCES:
patent: 2002/0123461 (2002-09-01), Drucker et al.
patent: WO 9803547 (1998-01-01), None
patent: WO 2007119101 (2007-10-01), None
Shin ED, et al. Gastroenterology 128(5):1340-1353, May 2005.
Alavik, et al., “Treatment of inflammatory bowel disease in a rodent model with the intestinal growth factor glucagon-like peptide-2”, J. Ped. Surg. 2000, vol. 35, 847-51.
Benjamin, M.A. et al, “Glucagon-like Peptide-2 Enhances Intestinal Epithelial Barrier Function of Both Transcellular and Paracellular Pathways in the Mouse”, Gut 2000; vol. 47 pp. 112-119.
Boushey R. et al, “GLP-2 Decreases Mortality and Reduces the Severity'of Indomethacininduced Murine Enteritis”, Am J. Physiol. 1999; vol. 277 pp. E937-E947.
Boushey, et al., “Glucagon-like peptide (GLP)-2 reduces chemotherapy-associated mortality and enhances survival in cells expressing a transfected GLP-2 receptor”, Cancer Research, 2001, vol. 61, 687-93.
Brubaker, P.L. et al, “Intestinal Function in Mice With Small Bowel Growth Induced by Glucagon-like Peptide-2”, Am. J. Physiol. 1997, vol. 272 pp. E1050-8.
Burin D.G. et al, “GLP-2 Stimulates Intestinal Growth in Premature TPN-fed Pigs by Suppressing Proteolysisrand Apoptosis”, Am. J. Physiol. 2000; vol. 279 pp. G1249-G1256.
Cameron H. et al, Glucagon-like Peptide-2—Enhanced Barrier Function Reduces Pathophysiology in a Model of Food Allerg., Am. J. Physiol. 2003, vol. 284, G905-G912.
Chance W.T. et al, “Maintaining Gut Integrity During Parenteral Nutrition of Tumor-Bearing Rats: Effects of Glucagon-like Peptide 2”, Nutrition and Cancer 2000; vol. 37 pp. 215-222.
Chance W.T. et al, “Prevention of Parenteral Nutrition-induced Gut Hypoplasia by Coinfusion of Gluca 4 on-like Pe.tide-2”, Amer. J. Ph siol. 1997; vol. 273 ws G559-63.
Cheeseman C.I., “The Effect of Gastric Inhibitory Polypeptide and Glucagon Like Peptides on Intestinal Hexose Transport”, Am. J. Physiol. 1996; vol. 271 pp. G477-G482.
Cheeseman C.I., “Upregulation of SGLT-1 Transport Activity in Rat Jejunum Induced by GLP-1 Infusion in vivo”, Am. J. Physiol. 1997; vol. 273 pp. R1965-R1971.
Drucker, D.J. et al, “Induction of Intestinal Epithelial Proliferation by Glucagon-like Peptide- 2”, Proc. Natl. Acad. Sci. USA 1996; vol. 93 pp. 7911-7916.
Drucker D.J. et al, “Human [Gly2] GLP-2 Reduces the Severity of Colonic Injury in a Murine Model of Experimental Colitis”, Am. J. Physiol. 1999; vol. 276 pp. G79-G91.
Guan X. et al, “GLP-2 Mediated Up-Regulation of Intestinal Blood Flow and Glucose Uptake Is Nitric Oxide-Dependent in TPN-Fed Piglets”, Gastroenterol 2003, vol. 125 pgs.
International Preliminary Report on Patentability and Writton Opinion issued in International Application No. PCT/IB2006/003943 dated Dec. 17, 2007.
International Search Report issued in International Application No. PCT/IB2006/003943 dated Dec. 17, 2007.
Kouris, et al., “The effect of glucagon-like peptide 2 on intestinal permeability and bacterial translocation in acute nectrotizing pancreatitis”, Am. J. Surg., 2001, vol. 181, 571-575.
Lovshin J.A. et al, “Extrahypothalimic Expression of the Glucagon-like Peptide-2 (GLP-2) Receptor is Coupled to Reduction of Glutamate-induced Cell Death in Cultured Hippocampal Cells”, Endocrinoloy 2004; vol. 145 pp. 3495-3506.
Monroe D.G. et al, “Prototypic G Protein-Coupled Receptor for the Intestinotrophic Factor Glucagon-like Peptide-2”, Proc. Natl Acad. Sci USA 1999; vol. 96 pp. 1569-1573.
Office Action issued in U.S. Appl. No. 11/607,030 dated Mar. 18, 2008.
Notice of Allowance issued in U.S. Appl. No. 11/607,030 dated Oct. 22, 2008.
Prasad R. et al, “GLP-2 Accelerates Recovery of Mucosal Absorptive Function After Ischemia/Reperfusion”, J. Pediatr. Surg. 2001; vol. 36 pp. 570-572.
Prasad R. et al, “Glucagon-like Peptide-2 Analogue enhances Intestinal Mucosal Mass After Ischemia and Re•erfusion”, J: Pediatr. Sur.. 2000; vol. 35 ws. 357-9.
Ramsanahie A.P. et al, “Glucagon-like Peptide 2 Enhances Intestinal Epithelial Restitution”, J. Surg Res 2002; vol. 107 pp. 44-49.
Response to Office Action filed in U.S. Appl. No. 11/607,030, filed Sep. 18, 2008.
Scott, et al., “GLP-2 augments the adaptive response to massive intestinal resection in rat”, Am. J. Physio. 1998, vol. 275, G911-921.
Shibata, et al., “Effect of glucagon, glicentin, glucagon-like peptide-1 and-2 on interdigestive gastroduodenal motility in dogs with a vagally denervated gastric pouch”, Scandinavian Journal of Gastroenterology, 36(10), 2001, 1049-1055.
Shin, et al., “Mucosal adaptation to enteral nutrients is dependent on the physiologic actions of glucagon-like peptide-2 in mice”, Gastroenterology, 128(5), 2005, 1340-1353.
Sigalet D.L. et al, “Hormonal Therapy for Short Bowel Syndrome”, J. Pediatr. Surg. 2000; vol. 35 pp. 360-4.
Tavakkolizadeh A., et al, “Glucagon-like Peptide 2: A New Treatment for Chemotherapy- Induced Enteritis”, J. Surg. Res. 2000; vol. 91 pp. 77-82.
Tsai, C.H. et al, “Biological Determinants of Intestinotrophic Properties of GLP-2 in vivo”, Am. J. Physiol. 1997; vol. 272 pp. G662-G668.
Tsai, C.H. et al, “Intestinal Growth-Promoting Properties of Glucagon-like Peptide-2 in Mice”, Am. J. Physiol. 1997; vol. 273 pp. E77-E84.
Walsh N.A. et al, “Glucagon-like Peptide-2 Receptor Activation in the Rat Intestinal Mucosa”, Endocrinology 2003; vol. 144(10) pp. 4385-4392.
Wojdemann, M. et al, “Glucagon-like Peptide-2 Inhibits Centrally Induced Antral Motility in Pigs”, Scand. J. Gastroenterol. 1998; vol. 33 pp. 828-832.
Wojdemann, M. et al, “Inhibition of Sham Feeding-stimulated Human Gastric Acid Secretion by Glucagon-like Peptide-2”, J. Clin Endocrinol Metab., 1999; vol. 84 pp. 2513-2517.
Xiao, Q. et al, “Secretion of the Intestinotrophic Hormone Glucagon-like Peptide 2 is Differentially Regulated by Nutrients in Humans”, Gastroenterol 1999; vol. 117 pp. 99-105.
Yusta B. et al, “Ideptification of Glucagon-like Peptide-2 (GLP-2)-Activated Signaling Pathways in Baby Hamster Kidney Fibroblasts Expressing the Rat GLP-2 Receptor”, J. Biol. Chem. 1999, vol. 274 pp. 30459-30467.
Yusta B. et al, “The Glucagon-like Peptide-2 Receptor Mediates Direct Inhibition of Cellular Apoptosis via a cAMP-dependent Protein Kinase-Independent Pathway”, J. Biol. Chem. 2000; vol. 275 pp. 35345-35352.
Demchyshyn Lidia
Wang Hong
Landsman Robert
NPS Pharmaceuticals Inc.
Stoel Rives LLP
LandOfFree
Ex vivo method for determining potential GLP-2 receptor... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ex vivo method for determining potential GLP-2 receptor..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ex vivo method for determining potential GLP-2 receptor... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2668776