Evolution of whole cells and organisms by recursive sequence...

Chemistry: molecular biology and microbiology – Process of mutation – cell fusion – or genetic modification

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S023100, C536S024300

Reexamination Certificate

active

06379964

ABSTRACT:

COPYRIGHT NOTIFICATION
Pursuant to 37 C.F.R. 1.71(e), Applicants note that a portion of this disclosure contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
FIELD OF THE INVENTION
The invention applies the technical field of molecular genetics to evolve the genomes of cells and organisms to acquire new and improved properties.
BACKGROUND
Cells have a number of well-established uses in molecular biology. For example, cells are commonly used as hosts for manipulating DNA in processes such as transformation and recombination. Cells are also used for expression of recombinant proteins encoded by DNA transformed/transfected or otherwise introduced into the cells. Some types of cells are also used as progenitors for generation of transgenic animals and plants. Although all of these processes are now routine, in general, the genomes of the cells used in these processes have evolved little from the genomes of natural cells, and particularly not toward acquisition of new or improved properties for use in the above processes.
The traditional approach to artificial or forced molecular evolution focuses on optimization of individual genes having discrete and selectable phenotypes. The strategy is to clone a gene, identify a discrete function for the gene and an assay by which it can be selected, mutate selected positions in the gene (e.g., by error-prone PCR or cassette mutagenesis) and select variants of the gene for improvement in the known function of the gene. A variant having improved function can then be expressed in a desired cell type. This approach has a number of limitations. First, it is only applicable to genes that have been isolated and functionally characterized. Second, the approach is usually only applicable to genes that have a discrete function. In other words, multiple genes that cooperatively confer a single phenotype cannot usually be optimized in this manner—and many genes have cooperative functions. Finally, this approach can only explore a very limited number of the total number of permutations even for a single gene and even fewer permutations when complete genomes are considered. For example, varying even ten positions in a protein with every possible amino acid would generate 20
10
variants, which is more than can be accommodated by existing methods of transfection and screening.
In view of these limitations, traditional approaches are inadequate for improving cellular genomes in many useful properties. For example, to improve a cell's capacity to express a recombinant protein might require modification in any or all of a substantial number of genes, known and unknown, having roles in transcription, translation, posttranslational modification, secretion or proteolytic degradation, among others. Attempting individually to optimize even all the known genes having such functions would be a virtually impossible task, let alone optimizing hitherto unknown genes which may contribute to expression in manners not yet understood.
For example, one area where traditional methods are used extensively is in the fermentation industry. The primary goal of current strain improvement programs (SIPs) in fermentation is typically an increase in product titre. State-of-the-art mutagenesis and screening is practiced by large fermentation companies, such as those in the pharmaceutical and chemical industries. Parent strains are mutated and individual fermentations of 5,000-40,000 mutants are screened by high-throughput methods for increases in product titre. For a well developed strain, an increase in yield of 10% per year (i.e., one new parent strain per year) is achieved using these methods. In general, cells are screened for titre increases significantly above that of the parent, with the detection sensitivity of most screens being ~5% increase due to variation in growth conditions. Only those that “breed true” during scale up make it to production and become the single parent of the next round of random mutagenesis.
Employing optimal mutation conditions, one mutant out of 5, 000-40,000 typically has a titre increase of 10%. However, a much higher percentage has slightly lower titre increases, e.g., about 4-6%. These are generally not pursued, since experience has demonstrated that a higher producer can be isolated and that a significant percent of the lower producers actually are no better than the parent strain (i.e., the variance observed is due to experimental artifact, rather than actual differences). The key to finding high producers using current strategies is to screen very large numbers of mutants per round of mutagenesis and to have a stable and sensitive assay. For these reasons, R&D to advance this field are in the automation and the screening capacity of the SiPs. Unfortunately, this strategy is inherently limited by the value of single mutations to strain improvement and the growth rate of the target organisms.
The present invention overcomes the problems noted above, providing, inter alia, novel methods for evolving the genome of whole cells and organisms.
SUMMARY OF THE INVENTION
In one aspect, the invention provides methods of evolving a cell to acquire a desired function. Such methods entail, e.g., introducing a library of DNA fragments into a plurality of cells, whereby at least one of the fragments undergoes recombination with a segment in the genome or an episome of the cells to produce modified cells. Optionally, these modified cells are bred to increase the diversity of the resulting recombined cellular population. The modified cells, or the recombined cellular population are then screened for modified or recombined cells that have evolved toward acquisition of the desired function. DNA from the modified cells that have evolved toward the desired function is then optionally recombined with a further library of DNA fragments, at least one of which undergoes recombination with a segment in the genome or the episome of the modified cells to produce further modified cells. The further modified cells are then screened for further modified cells that have further evolved toward acquisition of the desired function. Steps of recombination and screening/selection are repeated as required until the further modified cells have acquired the desired function. In one preferred embodiment, modified cells are recursively recombined to increase diversity of the cells prior to performing any selection steps on any resulting cells.
In some methods, the library or further library of DNA fragments is coated with recA protein to stimulate recombination with the segment of the genome. The library of fragments is optionally denatured to produce single-stranded DNA, which are annealed to produce duplexes, some of which contain mismatches at points of variation in the fragments. Duplexes containing mismatches are optionally selected by affinity chromatography to immobilized MutS.
Optionally, the desired function is secretion of a protein, and the plurality of cells further comprises a construct encoding the protein. The protein is optionally inactive unless secreted, and further modified cells are optionally selected for protein function. Optionally, the protein is toxic to the plurality of cells, unless secreted. In this case, the modified or further modified cells which evolve toward acquisition of the desired function are screened by propagating the cells and recovering surviving cells.
In some methods, the desired function is enhanced recombination. In such methods, the library of fragments sometimes comprises a cluster of genes collectively conferring recombination capacity. Screening can be achieved using cells carrying a gene encoding a marker whose expression is prevented by a mutation removable by recombination. The cells are screened by their expression of the marker resulting from removal of the mutation by reco

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Evolution of whole cells and organisms by recursive sequence... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Evolution of whole cells and organisms by recursive sequence..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Evolution of whole cells and organisms by recursive sequence... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2900124

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.