Event recording in a service database system

Data processing: measuring – calibrating – or testing – Measurement system – Performance or efficiency evaluation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S201060

Reexamination Certificate

active

06192326

ABSTRACT:

FIELD OF THE INVENTION
The invention is generally related to service database systems and especially to a method which can be used to perform different event recordings. The service database systems of an intelligent network form one preferable area of application.
BACKGROUND OF THE INVENTION
The fast development of telecommunications has made it possible for operators to offer users a large number of different services. A network architecture that provides advanced services is called an intelligent network. The common abbreviation for intelligent network is IN.
The functional architecture of an intelligent network is shown in
FIG. 1
where the functional entities of the network are shown as ovals. This architecture is described briefly below, because the invention will be described later by referring to the intelligent network environment.
The access of the end user (subscriber) to the network is handled by the CCAF (Call Control Agent Function). The access to the IN services is implemented by making additions to existing digital exchanges. This is done by using the basic call state model BCSM which describes the existing functionality used to process a call between two users. The BCSM is a high level state automaton description of the call control functions CCF required for establishing and maintaining a connection route between users. Functionality is added to this state model by using the service switching function SSF (cf. the partial overlap of the entities CCF and SSF in
FIG. 1
) so that it is possible to decide when it is necessary to call the services of the intelligent network (the IN services). After these IN services have been called, the service control function SCF that contains the service logic for the intelligent network handles the service-related processing (of the call attempt). The service switching function SSF thereby connects the call control function CCF to the service control function SCF and allows the service control function SCF to control the call control function CCF. For example, SCF can request that the SSF/CCF performs specific call or connection functions, for example, charging or routing operations. The SCF can also send requests to the service data function SDF which handles the access to the services-related data and network data of the intelligent network. The SCF can thereby, for example, request the SDF to retrieve specific service-related data or update this data.
The functions described above are further complemented by the specialized resources function SRF which provides the special functions required for implementing some of the services provided by the intelligent network. Examples of these services are protocol conversions, speech recognition and voice mail. The SCF can, for example, request the SSF/CCF functions to first establish a connection between the end users and SRF and then it can request the SRF to give voice messages to the end users.
Other functional entities of the intelligent network are various functions that relate to control, such as the SCEF (Service Creation Environment Function), SMF (Service Management Function), and SMAF (Service Management Access Function). The SMF includes, among other things, service control, the SMAF provides the connection to the SMF, and the SCEF makes it possible to specify, develop, test and feed IN services via the SMF to the SCF. Because these functions only relate to the operation of the network operator, they are not shown in FIG.
1
.
The role of the functional entities described in
FIG. 1
as related to the IN services is described briefly below. The CCAF receives the service request given by the calling party. The service request usually consists of lifting the receiver and/or a series of digits dialled by the calling party. The CCAF further transmits the service request to the CCF/SSF for processing. The call control function CCF does not have the service data but it has been programmed to recognize the need of a service request. The CCF interrupts the call setup for a moment and notifies the service switching function SSF about the state of the call. The task of the SSF is, using predefined criteria, to interpret the service request and thus determine whether the request is a service request related to the IN services. If this is the case, the SSF composes a standardized IN service request and sends the request to the SCF along with information about the state of the service request. The SCF receives the request and decodes it. After that it cooperates with the SSF/CCF, SRF, and SDF to provide the requested service to the end user.
The physical level architecture of the intelligent network describes how the functional entities described above are located in the physical entities of the network. The physical architecture of the intelligent network is illustrated in
FIG. 2
where the physical entities are described as rectangles or circles and functional entities as ovals. The signalling connections are described by dashed lines and the actual transport which is, for example, speech, by continuous lines. The optional functional entities are marked by dashed line. The signalling network shown in the Figure is a network according to SS7 (Signalling System Number 7 is a well-known signalling system described in the CCITT (nowadays ITU-T) blue book
Specifications of Signalling System
No. 7, Melbourne 1988).
The subscriber equipment SE which can include, for example, a phone, computer, or a telefax, are connected either directly to a service switching point SSP or to a network access point NAP.
The service switching point SSP provides the user with access to the network and handles all necessary selection functions. The SSP can also detect any IN service requests. Functionally, the SSP includes the call control and service selection functions.
The network access point NAP is a traditional telephone exchange that includes the call control function CCF, for example, a DX 220 exchange which can differentiate calls that require IN services from traditional calls and route the calls that require IN services to the appropriate SSP.
The service control point SCP includes the service programs that are used to produce the IN services.
The service data point SDP is a database containing customer and network data which is used by the service programs of the SCP to produce tailored services. The SCP can use SDP services directly or via the signalling network.
The intelligent peripheral IP provides special services, such as announcements and voice and multiple choice recognition.
The service switching and control point SSCP consists of an SCP and SSP located in the same node (in other words, if the SSP node shown in the drawing contains both an SCF and an SSF entity, the node in question is an SSCP).
The tasks of a service management point SMP include the management of the database (SDP), network monitoring and testing, and collecting network data. It can connect to all other physical entities.
The service creation environment point SCEP is used for specifying, developing and testing the IN services, and for entering the services in SMP.
The service adjunct AD is functionally equivalent to the service control point SCP, but the AD is directly connected to SSP with a fast data connection (for example, with an ISDN 30B+D connection) instead of via the common channel signalling network SS7.
The service node SN can control the IN services and perform data transfers with users. It communicates directly with one or more SSPs.
The service management access point SMAP is a physical entity which provides certain users with a connection to SMP.
The above is a brief description of the intelligent network as a background to the description of the method according to the invention. Interested readers can get a more detailed description of the intelligent network in, for example, ITU-T specifications Q.121X or in the AIN specifications of Bellcore.
As described above, SSF sends standardized IN service requests to SCF in certain phases of the call setup. Because the service control point SCP (or t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Event recording in a service database system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Event recording in a service database system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Event recording in a service database system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2561200

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.