Event-recording devices with identification codes

Communications: electrical – Selective – Interrogation response

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S665000, C340S686300, C360S060000, C360S069000, C360S075000

Reexamination Certificate

active

06617963

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to sensor technology. More particularly, the present invention relates to remote devices used to record the conditions of many items and that allow wireless interrogation to determine their identity and state.
In many sensing applications, it is desirable to determine whether an event has occurred. This event may include an over-limit such as surpassing a property threshold (i.e. a detrimental concentration of a bacteria in food) or may include a time integrated exposure, a material phase change, etc. In some sensing applications, it may be desirable to determine whether multiple events have occurred. The multiple events may include surpassing different thresholds for a property or combinations of multiple events for different properties. In many applications, monitoring an event as the event occurs may not be possible or practical, and thus it may be desirable to determine whether the event has occurred afterwards. In addition, many applications require that numerous items be separately analyzed to determine whether the event has occurred for any of the items. Further, the remote nature of many sensor applications, such as a sensor placed within a sealed container, may demand a wireless form of communication.
The majority of current wireless monitoring systems provide real time response which may not be suitable or necessary in applications where a well defined event is being detected. For the case of detecting an infrequent event, continual real time information feedback for a large number of items may be inefficient. In addition, the complexity and size of real time sensors may make application in many environments unpractical.
Many sensing applications provide significant challenges due to inaccessible, environmentally prohibitive, or functionally disadvantageous conditions. Current device designs often cannot meet this need. Active sensors have been combined with various forms of wireless data communication, but these devices are generally large and require a battery or other subsequent power source. Further, the battery power source and/or attendant wiring may have a limited range of operation, thereby making the system fragile.
One particular example of the need for multiple event-recording devices for a large number of items is in developing faster methods for inspecting and maintaining the structural and functional integrity of large systems. Such systems include highways, bridges, buildings, aircraft, food or waste products, and reusable launch vehicles (RLVs), such as the Space Shuttle. One type of primary failure mode that can affect the Space Shuttle thermal protection system (TPS) tile performance is thermal breach. Thermal breach may be caused by hot gas penetration and over-temperature conditions at the TPS bond line during earth reentry, and results in the loss of gap fillers and/or the dimensional instability of the TPS. Thermal breach is difficult to detect since thermal penetration may damage the interior surface and/or the TPS bond line without clearly showing external indication of damage on the tile's top surface.
Current shuttle inspection techniques involve visual and manual inspection of each of the gaps between all of the nearly 22,000 tiles using a hand held filler gauge to measure the thickness and depth of spaces between the tiles. The inspection may further include looking for other effects of thermal stress such as surface damage, discoloration, silicon deposits, or texture changes of the TPS coating. Thermal protection tiles are bonded to a vehicle using an organic adhesive. If the organic adhesive (normally a shiny red) appears dull or black, a closer inspection is required to determine the extent of charring. Presently, Space Shuttle recertification for reflight requires tens of thousands of person hours to manually inspect each of the 22,000 shuttle tiles. The substantial cost of TPS inspection ranks second in operations costs only behind the propulsion system.
Not only is the current approach very slow and expensive, but human inspection is inherently error-prone. Repetitive inspection of the thousands of tiles leads to inspector fatigue and greater potential for error. The scaffolding required to inspect the vehicle is additionally costly and time consuming to set up. For the next generation of reusable launch vehicles (RLVs), it is desired to reduce turnaround time to 24 hours. As current detection methods are prohibitively time consuming and expensive, an automated means of post reentry inspection of the TPS is desirable.
One proposed approach to maintaining RLV systems involves the use of discreet active sensors which rely on a power source directly connected to the sensor. Examples of active sensors which have been used to discretely monitor RLV systems such as propulsion and guidance include strain gauges, thermocouples, and fiberoptic sensors. However, the size and complexity of the active sensors do not allow for monitoring of the TPS since the abundant number of tiles would necessitate a prohibitively excessive amount of weight and wiring.
In view of the foregoing, there are desired improved structures and techniques for wireless sensing and recording for multiple objects.
SUMMARY OF THE INVENTION
The present invention provides a device that can be interrogated to determine its identity and its state. The state indicates whether one or more particular physical or chemical events have taken place. In effect, the device records one or more physical or chemical events or states. The device states used to record the one or more events may be recycled. The identity of the device allows it to be distinguished from a number of similar devices. Thus this invention finds particular usefulness in the context of an array of devices that can be probed by a wireless interrogation unit. The device tells the interrogator who it is and what state it is in. The devices and interrogation unit may use a logical analysis and reset to determine if an event has occurred. The interrogator can thus easily identify particular items in an array that have reached one or more particular conditions.
Other devices may be used to sense, record and report multiple physical or chemical events or states. The multiple physical or chemical events or states may be different physical or chemical events or states or may be the same physical or chemical state or event occurring numerous separate times. The multiple events or states may occur separately within two interrogations and/or multiple times over numerous interrogations.
In one embodiment for recording multiple events, the recording device assumes multiple distinct states. Each distinct state may be associated with a particular physical or chemical state or event and can be held until another event occurs. Each distinct device state may also be reported by the transponder in response to wireless interrogation. In another embodiment, the multiple device states may be recycled to permit continuous of the device.
In one specific example, the sensor is a temperature sensor and the physical or chemical events or states are exceeding one or more (high or low) threshold temperatures. A suitable device for this purpose may include a circuit as the recording mechanism and fuses in the circuit as the sensor. When a first threshold temperature is exceeded, a fuse opens at least one path through the circuit, thus changing the state of the recording mechanism. In one embodiment, opening the path changes the resonance frequency of the circuit. When a second threshold temperature is exceeded, a second fuse opens another path through the circuit, thus changing the state of the recording mechanism in a different manner than for the first threshold temperature. One way this can be detected is by probing the device with a swept- or stepped-frequency interrogation signal and detecting the peak frequency of the signal sent from the transponder. Similarly, when temperature decreases below a low-temperature threshold, a liquefied material freezes, thereby changin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Event-recording devices with identification codes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Event-recording devices with identification codes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Event-recording devices with identification codes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3096970

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.