Stock material or miscellaneous articles – Coated or structually defined flake – particle – cell – strand,... – Rod – strand – filament or fiber
Reexamination Certificate
2000-01-25
2001-08-07
Edwards, N. (Department: 1774)
Stock material or miscellaneous articles
Coated or structually defined flake, particle, cell, strand,...
Rod, strand, filament or fiber
C525S240000, C428S373000
Reexamination Certificate
active
06270891
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to polymer compositions having improved bonding performance. In particular, the subject invention pertains to a polymer composition comprising a blend of a homogeneous ethylene/&agr;-olefin interpolymer and a higher density polymer. The subject invention further pertains to the use of polymer compositions having improved bonding performance in various end use applications, such as fibers, nonwoven fabrics and articles fabricated therefrom (e.g., disposable incontinence garments or diapers, and rotational molded articles. The fibers have good spinnability, and result in a fabric having good bond strength and good elongation. The rotational molded articles have good ESCR, flexural modulus, Dart Impact B, and Izod Impact.
BACKGROUND OF THE INVENTION
Fiber is typically classified according to its diameter. Monofilament fiber is generally defined as having an individual fiber diameter greater than 15 denier, usually greater than 30 denier per filament. Fine denier fiber generally refers to a fiber having a diameter less than 15 denier per filament. Microdenier fiber is generally defined as fiber having less than 100 microns diameter. The fiber can also be classified by the process by which it is made, such as monofilament, continuous wound fine filament, staple or short cut fiber, spun bond, and melt blown fiber.
A variety of fibers and fabrics have been made from thermoplastics, such as polypropylene, highly branched low density polyethylene (LDPE) made typically in a high pressure polymerization process, linear heterogeneously branched polyethylene (e.g., linear low density polyethylene made using Ziegler catalysis), blends of polypropylene and linear heterogeneously branched polyethylene, blends of linear heterogeneously branched polyethylene, and ethylene/vinyl alcohol copolymers.
Of the various polymers known to be extrudable into fiber, highly branched LDPE has not been successfully melt spun into fine denier fiber. Linear heterogeneously branched polyethylene has been made into monofilament, as described in U.S. Pat. No. 4,076,698 (Anderson et al.), the disclosure of which is incorporated herein by reference. Linear heterogeneously branched polyethylene has also been successfully made into fine denier fiber, as disclosed in U.S. Pat. No. 4,644,045 (Fowells), U.S. Pat. No. 4,830,907 (Sawyer et al.), U.S. Pat. No. 4,909,975 (Sawyer et al.) and in U.S. Pat. No. 4,578,414 (Sawyer et al.), the disclosures of which are incorporated herein by reference. Blends of such heterogeneously branched polyethylene have also been successfully made into fine denier fiber and fabrics, as disclosed in U.S. Pat. No. 4,842,922 (Krupp et al.), U.S. Pat. No. 4,990,204 (Krupp et al.) and U.S. Pat. No. 5,112,686 (Krupp et al.), the disclosures of which are all incorporated herein by reference. U.S. Pat. No. 5,068,141 (Kubo et al.) also discloses making nonwoven fabrics from continuous heat bonded filaments of certain heterogeneously branched LLDPE having specified heats of fusion. While the use of blends of heterogeneously branched polymers produces improved fabric, the polymers are more difficult to spin without fiber breaks.
U.S. Pat. No. 5,549,867 (Gessner et al.), describes the addition of a low molecular weight polyolefin to a polyolefin with a molecular weight (M
z
) of from 400,000 to 580,000 to improve spinning. The Examples set forth in Gessner et al. are directed to blends of 10 to 30 weight percent of a lower molecular weight metallocene polypropylene with from 70 to 90 weight percent of a higher molecular weight polypropylene produced using a Ziegler-Natta catalyst.
WO 95/32091 (Stahl et al.) discloses a reduction in bonding temperatures by utilizing blends of fibers produced from polypropylene resins having different melting points and produced by different fiber manufacturing processes, e.g., meltblown and spunbond fibers. Stahl et al. claims a fiber comprising a blend of an isotactic propylene copolymer with a higher melting thermoplastic polymer. However, while Stahl et al. provides some teaching as to the manipulation of bond temperature by using blends of different fibers, Stahl et al. does not provide guidance as to means for improving fabric strength of fabric made from fibers having the same melting point.
U.S. patent application Ser. No. 544,497, in the names of Lai, Knight, Chum, and Markovich, incorporated herein by reference, discloses blends of substantially linear ethylene polymers with heterogeneously branched ethylene polymers, and the use of such blends in a variety of end use applications, including fibers. The disclosed compositions preferably comprise a substantially linear ethylene polymer having a density of at least 0.89 grams/centimeters
3
. However, Lai et al. disclosed fabrication temperatures only above 165° C. In contrast, to preserve fiber integrity, fabrics are frequently bonded at lower temperatures, such that all of the At crystalline material is not melted before or during fusion.
European Patent Publication (EP) 340,982 discloses bicomponent fibers comprising a first component core and a second component sheath, which second component further comprises a blend of an amorphous polymer with an at least partially crystalline polymer. The disclosed range of the amorphous polymer to the crystalline polymer is from 15:85 to 00[sic, 90]:10. Preferably, the second component will comprise crystalline and amorphous polymers of the same general polymeric type as the first component, with polyester being preferred. For instance, the examples disclose the use of an amorphous and a crystalline polyester as the second component.
EP 340,982, at Tables I and II, indicates that as the melt index of the amorphous polymer decreases, the web strength likewise detrimentally decreases. Incumbent polymer compositions include linear low density polyethylene and high density polyethylene having a melt index generally in the range of 0.7 to 200 grams/10 minutes.
While such polymers have found good success in the marketplace in fiber applications, the fibers made from such polymers would benefit from an improvement in bond strength, which would lead to stronger fabrics, and accordingly to increased value to the nonwoven fabric and article manufacturers, as well as to the ultimate consumer. However, any benefit in bond strength must not be at the cost of a detrimental reduction in spinnability or a detrimental increase in the sticking of the fibers or fabric to equipment during processing.
SUMMARY OF THE INVENTION
It has been found that the inclusion of a low melting point homogeneous polymer to a higher melting point polymer having an optimum melt index can usefully provide a calendered fabric having an improved bond performance, while maintaining adequate fiber spinning performance. Accordingly, the subject invention provides a fiber having a diameter in a range of from 0.1 to 50 denier which is prepared from a polymer blend, wherein the polymer blend comprises:
a. from 0.5 percent to 25 weight percent (by weight of the polymer blend) of a first polymer which is a homogeneous ethylene/&agr;-olefin interpolymer having:
i. a melt index of from 0.5 to 100 grams/10 minutes, and
ii. a density of from 0.855 to 0.950 grams/centimeters
3
, and
b. a second polymer which is an ethylene homopolymer or an ethylene/&agr;-olefin interpolymer having:
i. a melt index of from 0.5 to 500 grams/10 minutes, and
ii. a density which is at least 0.01 grams/centimeters
3
greater, preferably at least 0.03 grams/centimeters
3
greater, more preferably at least 0.05 grams/centimeters
3
greater, and most preferably at least 0.07 grams/centimeters
3
greater than the density of the first polymer, wherein the fiber is bondable at a temperature less than 165° C.
Preferably, the fiber of the invention will be prepared from a polymer composition comprising:
a. at least one substantially linear ethylene/&agr;-olefin interpolymer having:
i. a melt flow ratio, I
10
/I
2
,≧5.63,
ii. a molecular weight distribution, M
w
/M
n
, defined by the equation:
M
w
/
Chum Pak-Wing S.
Knickerbocker Ed N.
Markovich Ronald P.
Maugans Rexford A.
Sawchuk Rebecca J.
Edwards N.
The Dow Chemical Company
LandOfFree
Ethylene polymer having improving sealing performance and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ethylene polymer having improving sealing performance and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ethylene polymer having improving sealing performance and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2542950