Ethylene interpolymer blend compositions

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S310000, C264S331170

Reexamination Certificate

active

06448341

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to articles prepared from ethylene interpolymers made by an interpolymerization process. The processes utilize at least one homogeneous polymerization catalyst and at least one heterogeneous polymerization catalyst in separate reactors connected in series or in parallel. Interpolymers produced from such processes are thermoplastic and have surprisingly beneficial properties, including improved room and low temperature impact and tear properties, high modulus and higher crystallization temperatures, while maintaining equivalent or improved processability as compared to the individual blend components. The resins of the present invention are useful in making molded or shaped articles, film, and the like.
BACKGROUND OF THE INVENTION
There are known several polymerization processes for producing polyethylene and ethylene interpolymers, including suspension, gas-phase and solution processes. Of these, the solution process is of commercial significance due to the advantages described in U.S. Pat. No. 4,330,646 (Sakurai et al.), the disclosure of which is incorporated herein by reference. A most advantageous solution process would be found if the temperature of the polymerization solution could be increased and the properties of the polymers suitably controlled. U.S. Pat. No. 4,314,912 (Lowery et al.), the disclosure of which is incorporated herein by reference, describes a Ziegler-type catalyst suitable for use in high temperature solution polymerization processes. U.S. Pat. No. 4,612,300 (Coleman, III), the disclosure of which is incorporated herein by reference, and U.S. Pat. No. 4,330,646 describe a catalyst and solution polymerization process for producing polyethylenes having a narrow molecular weight distribution. U.S. Pat. No. 4,330,646 also describes a process for producing polyethylenes with a broader molecular weight distribution in a solution process. These processes are based on heterogeneous Ziegler type catalysts, which produce interpolymers with broad composition distributions regardless of their molecular weight distribution. Such ethylene polymers have deficiencies in some properties, for instance, poor transparency and poor anti-blocking properties.
Solution polymerization processes for producing ethylene interpolymers with narrow composition distributions are also known. U.S. Pat. No. 4,668,752 (Tominari et al.), the disclosure of which is incorporated herein by reference, describes the production of heterogeneous ethylene copolymers with characteristics which include a narrower composition distribution than conventional heterogeneous copolymers. The utility of such polymer compositions in improving mechanical, optical and other important properties of formed or molded objects is also described. The complex structures of the copolymers necessary to achieve such advantages are finely and difficultly controlled by nuances of catalyst composition and preparation; any drift in which would cause a significant loss in the desired properties. U.S. Pat No. 3,645,992 (Elston), the disclosure of which is incorporated herein by reference, describes the preparation of homogeneous polymers and interpolymers of ethylene in a solution process operated at temperatures of less than 100° C. These polymers exhibit a “narrow composition distribution”, a term defined by a comonomer distribution that, within a given polymer molecule, and between substantially all molecules of the copolymer, is the same. The advantages of such copolymers in improving optical and mechanical properties of objects formed from them is described. These copolymers, however, have relatively low melting points and poor thermal resistance.
U.S. Pat. No. 4,701,432 (Welborn, Jr.), the disclosure of which is incorporated herein by reference, describes a catalyst composition for the production of ethylene polymers having a varied range of composition distributions and/or molecular weight distributions. Such compositions contain a metallocene and a non-metallocene transition metal compound supported catalyst and an aluminoxane. U.S. Pat. No. 4,659,685 (Coleman, III et al.), the disclosure of which is incorporated herein by reference, describes catalysts which are composed of two supported catalysts (one a metallocene complex supported catalyst and the second a non-metallocene transition metal compound supported catalyst) and an aluminoxane. The disadvantages of such catalysts in the commercial manufacture of ethylene polymers are primarily twofold. Although, the choice of the metallocene and a non-metallocene transition metal compounds and their ratio would lead to polymers of controlled molecular structure, the broad range of ethylene polymer structures required to meet all the commercial demands of this polymer family would require a plethora of catalyst compositions and formulations. In particular, the catalyst compositions containing aluminoxanes (which are generally required in high amounts with respect to the transition metal) are unsuitable for higher temperature solution processes as such amount of the aluminum compounds result in low catalyst efficiencies and yield ethylene polymers with low molecular weights and broad molecular weight distributions.
Thus, it would be desirable to provide an economical solution process, which would provide ethylene interpolymers with controlled composition and molecular weight distributions. It would be additionally desirable to provide a process for preparing such interpolymers with reduced complexity and greater flexibility in producing a full range of interpolymer compositions in a controllable fashion.
Useful articles which could be made from such interpolymer compositions include films (e.g., cast film, blown film or extrusion coated types of film), fibers (e.g., staple fibers, melt blown fibers or spunbonded fibers (using, e.g., systems as disclosed in U.S. Pat. No. 4,340,563, U.S. Pat. No. 4,663,220, U.S. Pat. No. 4,668,566, or U.S. Pat. No. 4,322,027, all of which are incorporated herein by reference), and gel spun fibers (e.g., the system disclosed in U.S. Pat. No. 4,413,110, incorporated herein by reference)), both woven and nonwoven fabrics (e.g., spunlaced fabrics disclosed in U.S. Pat. No. 3,485,706, incorporated herein by reference) or structures made from such fibers (including, e.g., blends of these fibers with other fibers, e.g., PET or cotton)), and molded articles (e.g., blow molded articles, injection molded articles and rotational molded articles).
Rotational molding (also known as rotomolding), is used to manufacture hollow objects from thermoplastics. In the basic process of rotational molding, pulverized polymer is placed in a mold. While the mold is being rotated, the mold is heated and then cooled. The mold can be rotated uniaxially or biaxially and is usually rotated biaxially, i.e., rotated about two perpendicular axes simultaneously. The mold is typically heated externally and then cooled while being rotated. As such. rotomolding is a zero shear process and involves the tumbling, heating and melting of thermoplastic powder, followed by coalescence, fusion or sintering and cooling. In this manner, articles may be obtained which are complicated, large in size, and uniform in wall thickness.
Many compositions have been employed in rotational molding. For example, U.S. Pat. No. 4,857,257 teaches rotational molding compositions comprising polyethylene, peroxide cross-linker, and a metal cationic compound while U.S. Pat. No. 4,587,318 teaches crosslinked compositions comprising ethylene terpolymer and organic peroxide.
Research disclosure, RD-362010-A describes blends of traditionally catalyzed polyolefins, especially very low or ultralow density polyethylenes with densities of 0.89 to 0.915 g/cm3 with polyolefins made using single-site, metallocene catalysts. These blends are especially suited to rotational molding providing good control over the balance of processability and improved environmental stress crack resisitance (ESCR) and tear properties.
In the case of rotational molding, the final density an

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ethylene interpolymer blend compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ethylene interpolymer blend compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ethylene interpolymer blend compositions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2865192

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.